Year 10 Term 1 Homework

Student Name:	Grade:
Date:	Score:

Table of contents

10	Year	10 Ter	m 1 Week 10 Homework	1
	10.1	Deduct	tive geometry	1
		10.1.1	Basic properties of geometry	1
		10.1.2	Polygons	2
		10.1.3	Deductive proofs involving angles	3
	10.2	Miscel	laneous exercises	4

This edition was printed on March 14, 2022 with **Worked Solutions.**Camera ready copy was prepared with the **Late X2e** typesetting system.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

10 Year 10 Term 1 Week 10 Homework

10.1 Deductive geometry

10.1.1 Basic properties of geometry

- Adjacent angles:
 - have a common vertex
 - have a common ray
 - lie on opposite sides of this common ray.
- Complementary angles have a sum of 90°.
- Supplementary angles have a sum of 180°.
- Angles at a point have a sum of 360° .
- Vertically opposite angles are equal.
- Parallel lines:
- Angle sum of a triangle is 180°.
- The exterior angle of a triangle is equal to the sum of the two interior opposite angles.
- Some other properties of triangles:
 - In a equilateral triangle all angles are 60°
 - In an isosceles triangle, the equal angles are opposite the equal sides.
 - In any triangle, the longest side is opposite the largest angle and the shortest side is opposite
 the smallest angle.
- The angle sum of a quadrilateral is 360°

Exercise 10.1.1 Find the value of x in each of these, giving reasons.

10.1.2 Polygons

- The sum S of the interior angles of any n-sided polygon is given by $S=(n-2)\times 180^\circ$
- The sum S of the exterior angles of any convex polygon is 360°
- In any regular n-sided convex polygon:
 - each interior angle measures $\frac{180^{\circ}(n-2)}{n}$
 - each exterior angle measures $\frac{360^{\circ}}{n}$

Exercise 10.1.2 How many sides have each polygon?

1. decagon _______

2. nonagon ______

3. dodecagon ______

4. heptagon ______

5. undecagon ______

Exercise 10.1.3 Find the sizes of the interior and exterior angles of the following regular polygons:

- 1. hexagon: _____
- 2. pentagon:
- 3. dodecagon: _____

10.1.3 Deductive proofs involving angles

Exercise 10.1.4

1. Given that BA || DE. Prove that $\angle BCD = \angle ABC + \angle CDE$.

2. Given that AB || CD || EF. Prove that $\alpha = \beta + \gamma$.

3. WX || UY || ZV and UY bisects $\angle TUV$. Prove that $\angle TWX = \angle UVZ$

4. CD || EF and GH || DJ. Prove that $\angle CHG = \angle JIF$.

10.2 Miscellaneous exercises

Exercise 10.2.1 Find the interior angle sum of a regular polygon that has:

1. exterior angles measuring 72°.

2. interior angles measuring 156°.

Exercise 10.2.2 In each of the following, ABCD is a rhombus. Find the value of m, giving reasons.

b A 54° m°

Exercise 10.2.3 ABCD is a rhombus. $\angle DBE = 30^{\circ}$. $\angle BAC = 36^{\circ}$. Find the value of x.

Exercise 10.2.4 Find the value of the pronumeral in each of the following, giving reasons:

1. In the diagram. BD = CD, DE||AC and $CD \perp DF$. Find the value of a.

2. In the diagram, AB||CD and HG bisects $\angle FGD$. Find the value of x.

3. In the diagram IJKLM is a regular pentagon. find the value of x.

Exercise 10.2.5

1. In $\triangle PQR$, PQ = PR. S is point on PQ such that SR bisects $\angle PRQ$. Prove that $\angle PSR = 3\angle PRS$.

2. In $\triangle ABC$, AC is produced to D. E is a point on AC such that EB bisects $\angle ABC$. Let $\angle ABE = \alpha$ and $\angle BAC = \beta$.

(a) Find the expressions for $\angle BEC$ and $\angle BCD$, giving reasons.

(b) Hence, prove that $\angle BAC + \angle BCD = 2\angle BEC$.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

Exercise 10.2.6

1. In the diagram, VW = VY and $UX \perp WY$. Prove that $\triangle UVZ$ is isosceles.

2. In $\triangle ABC$, D is a point on AC such that BD bisects $\angle ABC$. E is a point on BD such that $\angle BCE = \angle BAD$. Let $\angle BAC = \alpha$ and $\angle ABD = \beta$.

(a) Explain why $\angle BDC = \alpha + \beta$.

(b) Hence, prove that CD = CE.

Exercise 10.2.7 Solve each equation for x:

1. $x(x-1)(4x+1)^2(x^2+1) = 0$

2. $x^4 - 64 = 0$

3. $x^7 - 3x^5 = 0$

4. $x^4 - 4x^2 = 5$

5. 4 - 2(x - b) = a + 3

Exercise 10.2.8

1. Find the area of the triangle shown below in terms of x and y.

2. Reduce to lowest terms: $\frac{2x^2-3x-2}{10+x-3x^2}$

3. Rationalise the denominator: $\frac{1}{\sqrt{5}+2}$

4. Simplify: $\frac{\frac{1}{x+1} + \frac{1}{x}}{\frac{1}{x+1} - \frac{1}{x}}$