# Year 10 Term 1 Homework

| Student Name: | Grade: |
|---------------|--------|
| Date:         | Score: |

# **Table of contents**

| 10 | Year | 10 Ter | m 1 Week 10 Homework Solutions    | 1 |
|----|------|--------|-----------------------------------|---|
|    | 10.1 | Deduct | ive geometry                      | 1 |
|    |      | 10.1.1 | Basic properties of geometry      | 1 |
|    |      | 10.1.2 | Polygons                          | 2 |
|    |      | 10.1.3 | Deductive proofs involving angles | 3 |
|    | 10.2 | Missol | Innous avaraisas                  | 1 |

This edition was printed on March 14, 2022.

Camera ready copy was prepared with the LATEX2e typesetting system.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

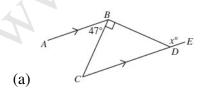
# 10 Year 10 Term 1 Week 10 Homework Solutions

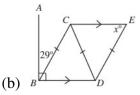
# 10.1 Deductive geometry

# 10.1.1 Basic properties of geometry

- Adjacent angles:
  - have a common vertex
  - have a common ray
  - lie on opposite sides of this common ray.
- Complementary angles have a sum of 90°.
- Supplementary angles have a sum of 180°.
- Angles at a point have a sum of  $360^{\circ}$ .
- Vertically opposite angles are equal.
- Parallel lines:
- Angle sum of a triangle is 180°.
- The exterior angle of a triangle is equal to the sum of the two interior opposite angles.
- Some other properties of triangles:
  - In a equilateral triangle all angles are 60°
  - In an isosceles triangle, the equal angles are opposite the equal sides.
  - In any triangle, the longest side is opposite the largest angle and the shortest side is opposite
    the smallest angle.
- The angle sum of a quadrilateral is  $360^{\circ}$

# Exercise 10.1.1 Find the value of x in each of these, giving reasons.





**Solution:** (a)  $x = 47^{\circ} + 90^{\circ} = 137^{\circ}$ , (b)  $x = 90^{\circ} - 29^{\circ} = 61^{\circ}$ .

# 10.1.2 Polygons

- The sum S of the interior angles of any n-sided polygon is given by  $S=(n-2)\times 180^\circ$
- The sum S of the exterior angles of any convex polygon is  $360^{\circ}$
- In any regular n-sided convex polygon:
  - each interior angle measures  $\frac{180^{\circ}(n-2)}{n}$
  - each exterior angle measures  $\frac{360^{\circ}}{n}$

# Exercise 10.1.2 How many sides have each polygon?

- 1. decagon 10 sides
- 2. nonagon <u>9 sides</u>
- 3. dodecagon 12 sides
- 4. heptagon 7 sides
- 5. undecagon 11 sides

# Exercise 10.1.3 Find the sizes of the interior and exterior angles of the following regular polygons:

1. hexagon:

Solution: Interior 
$$=\frac{180(6-2)}{6}=120^{\circ}$$

$$Exterior = \frac{360^{\circ}}{6}=60^{\circ}.$$

2. pentagon:

Solution: Interior 
$$=\frac{180(5-2)}{5}=108^{\circ}$$

$$Exterior = \frac{360^{\circ}}{5}=72^{\circ}.$$

3. dodecagon:

Solution: Interior 
$$=\frac{180(12-2)}{12}=150^{\circ}$$

$$Exterior = \frac{360^{\circ}}{12}=30^{\circ}.$$

## 10.1.3 Deductive proofs involving angles

#### Exercise 10.1.4

1. Given that BA || DE. Prove that  $\angle BCD = \angle ABC + \angle CDE$ .

$$D \xrightarrow{B} C$$

Solution: Draw a line FG||AB  $\angle ABC = \angle BCF \text{ and } \angle CDE = \angle FCD$  $\angle BCD = \angle BCF + \angle FCD = \angle ABC + \angle CDE.$ 

2. Given that AB || CD || EF. Prove that  $\alpha = \beta + \gamma$ .

$$C \xrightarrow{A} E \xrightarrow{B} B$$

$$C \xrightarrow{A} E \xrightarrow{B} F$$

$$C \xrightarrow{A} D$$

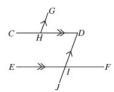
**Solution:**  $\therefore \angle BAE + \angle \alpha = 180^{\circ}$ , (co-interior angle)  $\angle BAE + \angle \beta + \angle \gamma = 180^{\circ}$  (co-interior angle)  $\therefore \angle \alpha = \angle \beta + \angle \gamma$ .

3. WX || UY || ZV and UY bisects  $\angle TUV$ . Prove that  $\angle TWX = \angle UVZ$ 



Solution:  $\angle TUY = \angle YUV \ UY \ bisects \ \angle TUY$   $\angle TWX = \angle TUY \ and \ \angle YUV = \angle UVZ \ (alternative \ angle)$  $\therefore \angle YWX = \angle UVZ.$ 

4. CD || EF and GH || DJ. Prove that  $\angle CHG = \angle JIF$ .



Solution:  $\angle JIF = \angle EID$ , opposite angle  $\angle CDI + \angle DIE = 180^{\circ}$  and  $\angle CHG + \angle GHD = 180^{\circ}$  and  $\angle GHD = \angle IDH$  (Alternative angle)  $\therefore \angle CHG = \angle JIF$ .

## 10.2 Miscellaneous exercises

# Exercise 10.2.1 Find the interior angle sum of a regular polygon that has:

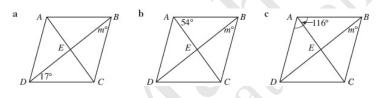
1. exterior angles measuring 72°.

**Solution:** 
$$\frac{360^{\circ}}{n} = 72, \Rightarrow n = 5 \Rightarrow interior = \frac{180^{\circ}(5-2)}{5} = 108^{\circ}$$
$$\therefore sum = 180 \times 5 = 540^{\circ}.$$

2. interior angles measuring 156°.

Solution: 
$$interior = \frac{180^{\circ}(n-2)}{n} = 156^{\circ}$$
$$\therefore sum = 156 \times 15 = 2340^{\circ}.$$

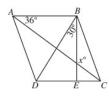
Exercise 10.2.2 In each of the following, ABCD is a rhombus. Find the value of m, giving reasons.



Solution: a. 
$$\angle CBD = 17^\circ$$
 (base  $\angle s$  of an isosceles  $\triangle$ ,  $BC = CD$  b.  $\angle AEB = 90^\circ$  (diagonals of a rhombus are  $\bot$ )
$$\angle ABE = 36^\circ \ (\angle sum \ of \ a \ \triangle)$$

$$\angle CBE = 36^\circ \ (diagonals \ of \ a \ rhombus \ bisects \ \angle s)$$
c.  $\angle ABC = 64^\circ$ ,  $\Rightarrow \ \angle EBC = 32^\circ$ .

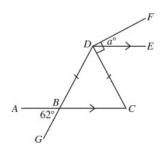
Exercise 10.2.3 ABCD is a rhombus.  $\angle DBE = 30^{\circ}$ .  $\angle BAC = 36^{\circ}$ . Find the value of x.



Solution: 
$$\angle D = 180^{\circ} - 36^{\circ} \times 2 = 108^{\circ}$$
  
 $\angle DBC = \frac{108}{2} = 54^{\circ} \text{ and } \angle EBC = 54^{\circ} - 30^{\circ} = 24^{\circ}$   
∴  $\angle x = 180^{\circ} - 24^{\circ} - 36^{\circ} = 120^{\circ}$ 

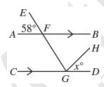
# Exercise 10.2.4 Find the value of the pronumeral in each of the following, giving reasons:

1. In the diagram. BD = CD, DE||AC and  $CD \perp DF$ . Find the value of a.



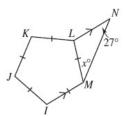
```
Solution: \angle DBC = 62^{\circ} (vertically opposite \angle s)
\angle DCB = 62^{\circ} \text{ (base } \angle s \text{ of an isosceles } \triangle, BD = CD)
\angle EDC = 62^{\circ} \text{ (alternative } \angle s \text{ } DE || AC)
\angle FDE = 90^{\circ} - 62^{\circ} = 28^{\circ}, \Rightarrow \therefore a = 28^{\circ}. \text{ (adjacent } \angle s \text{ in a right angle)}
```

2. In the diagram, AB||CD and HG bisects  $\angle FGD$ . Find the value of x.



Solution: 
$$\angle BFG = 58^{\circ}$$
 (vertically opposite  $\angle s$ )  
 $\angle EGD = 122^{\circ}$  (Co-interior  $\angle s$  as  $AB||CD$ )  
 $\therefore \angle HGD = 122^{\circ} \div 2 = 61^{\circ}, \Rightarrow x = 61^{\circ}$ . (HG bisects  $\angle FGD$ )

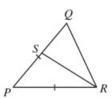
3. In the diagram IJKLM is a regular pentagon, find the value of x.



Solution: 
$$\angle IML = 108^{\circ}$$
, (angle in a regular pentagon)  
 $\angle MLN = 108^{\circ}$  (alternate  $\angle s$ , as  $LN||LM$ ),  
 $\angle LMN = 45^{\circ}$ ,  $\Rightarrow$   $\therefore$   $x = 45^{\circ}$ .

#### Exercise 10.2.5

1. In  $\triangle PQR$ , PQ = PR. S is point on PQ such that SR bisects  $\angle PRQ$ . Prove that  $\angle PSR = 3\angle PRS$ .



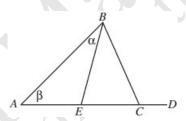
Solution: Let 
$$\angle PRS = \alpha$$
,  $\Rightarrow \angle QRS = \alpha$ , (SR bisects  $\angle PRQ$ )
$$\angle PRQ = 2\alpha \quad (sum \ of \ a \ adjacent \ angles)$$

$$\angle PQR = \angle PRQ = 2\alpha, \ (base \ angles \ of \ isosceles \ angle)$$

$$\angle PSR = \angle QRS + \angle PQR = 3\alpha, \ (exterior \ angle \ of \ \triangle QRS)$$

$$\therefore \angle PSR = 3\angle PRS.$$

2. In  $\triangle ABC$ , AC is produced to D. E is a point on AC such that EB bisects  $\angle ABC$ . Let  $\angle ABE = \alpha$  and  $\angle BAC = \beta$ .



(a) Find the expressions for  $\angle BEC$  and  $\angle BCD$ , giving reasons.

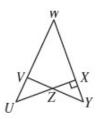
Solution: Let 
$$\angle ABE = \alpha$$
,  $\angle BAC = \beta$   
 $\angle BEC = \alpha + \beta$  (exterior  $\angle$  of  $\triangle ABC$ )  
 $\angle EBC = \alpha \angle ABE$  (BE bisects  $\angle ABC$ )  
 $\angle BCD = (\alpha + \beta) + \beta = 2\alpha + \beta$ .

(b) Hence, prove that  $\angle BAC + \angle BCD = 2 \angle BEC$ .

**Solution:**  $\angle BAC + \angle BCD = \beta + 2\alpha + \beta = 2(\alpha + \beta) = 2\angle BEC$ .

#### Exercise 10.2.6

1. In the diagram, VW = VY and  $UX \perp WY$ . Prove that  $\triangle UVZ$  is isosceles.



```
Solution: Let \angle UWY = \alpha, \Rightarrow \angle WUX = 90^{\circ} - \alpha, (\angle Sum \ of \triangle UWX)

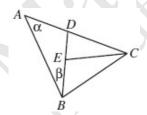
\angle VYW = \alpha, \Rightarrow \angle XZY = 90^{\circ} - \alpha, (\angle Sum \ of \triangle XYZ)

\angle UZV = 90^{\circ} - \alpha, (Vertically opposite \angle S)

\therefore \angle WUX = \angle UZV, (both equal to 90^{\circ} - \alpha)

\therefore \triangle UV is an isosceles.
```

2. In  $\triangle ABC$ , D is a point on AC such that BD bisects  $\angle ABC$ . E is a point on BD such that  $\angle BCE = \angle BAD$ . Let  $\angle BAC = \alpha$  and  $\angle ABD = \beta$ .



(a) Explain why  $\angle BDC = \alpha + \beta$ .

**Solution:** 
$$\angle BEC = \alpha + \beta$$
. (exterior  $\angle$  of  $\triangle ABD$ )

(b) Hence, prove that CD = CE.

Solution: 
$$\angle BCE = \angle BAD = \alpha$$
, (given)  
 $\angle DBC = \beta$ , (BD bisects  $\angle ABC$ )  
 $\angle DEC = \alpha + \beta$  (exterior  $\angle$  of  $\triangle BCE$ )  
 $\therefore \angle BDC = \angle DEC$ , (both equal to  $\alpha + \beta$ )  
 $\therefore CD = CE$ . (equal sides lie opposite equal  $\angle S$ )

## Exercise 10.2.7 Solve each equation for x:

1. 
$$x(x-1)(4x+1)^2(x^2+1)=0$$

Solution:  $\begin{cases} x = 0, \\ (x - 1) = 0, \Rightarrow x = 1, \\ 4x + 1 = 0, \Rightarrow x = -\frac{1}{4} \\ x^2 + 1 = 0, \Rightarrow x^2 = -1, \Rightarrow x = \sqrt{-1} \text{ (invalid)}. \end{cases}$ 

2. 
$$x^4 - 64 = 0$$

**Solution:**  $(x^2 - 8)(x^2 + 8) = 0, \Rightarrow (x - \sqrt{8})(x + \sqrt{8})(x^2 + 8) = 0$  $\therefore x = \pm 2\sqrt{2}, \text{ but } x^2 + 8 \neq 0.$ 

# 3. $x^7 - 3x^5 = 0$

Solution:  $x^7 - 3x^5 = 0, \Rightarrow x^5(x^2 - 3) = 0,$   $\Rightarrow x^5(x - \sqrt{3})(x + \sqrt{3}) = 0$  $\therefore x = 0, x = \sqrt{3} \text{ and } x = -\sqrt{3}.$ 

4. 
$$x^4 - 4x^2 = 5$$

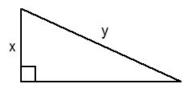
Solution:  $x^4 - 4x^2 - 5 = 0, \Rightarrow (x^2 + 1)(x^2 - 5) = 0$   $\Rightarrow (x^2 + 1)(x - \sqrt{5})(x + \sqrt{5}) = 0$  $\therefore x = \pm \sqrt{5} \text{ but } (x^2 + 1 \neq 0).$ 

5. 
$$4 - 2(x - b) = a + 3$$

**Solution:**  $4 - 2x + 2b = a + 3 \implies -2x = a - 1 - 2b$   $\implies x = -\frac{1}{2}(a - 2b - 1)$ 

### Exercise 10.2.8

1. Find the area of the triangle shown below in terms of x and y.



Solution:

$$b = \sqrt{y^2 - x^2}, \Rightarrow A = \frac{1}{2}xb$$
  
=  $\frac{1}{2}x(\sqrt{y^2 - x^2})$   
=  $\frac{x\sqrt{y^2 - x^2}}{2}$ .

2. Reduce to lowest terms:  $\frac{2x^2-3x-2}{10+x-3x^2}$ 

Solution:

$$\frac{2x^2 - 3x - 2}{10 + x - 3x^2} = \frac{(2x+1)(x-2)}{(5-3x)(2-x)}$$
$$= \frac{-2x-1}{5+3x}$$

3. Rationalise the denominator:  $\frac{1}{\sqrt{5}+2}$ 

Solution:

$$\frac{1}{\sqrt{5}+2} = \frac{\sqrt{5}-2}{(\sqrt{5})^2 - 2^2} = \sqrt{5}-2$$

4. Simplify:  $\frac{\frac{1}{x+1} + \frac{1}{x}}{\frac{1}{x+1} - \frac{1}{x}}$ 

Solution:

$$\frac{\frac{1}{x+1} + \frac{1}{x}}{\frac{1}{x+1} - \frac{1}{x}} = \frac{\frac{x}{x(x+1)} + \frac{x+1}{x(x+1)}}{\frac{x}{x(x+1)} - \frac{x+1}{x(x+1)}}$$

$$= \frac{\frac{x+x+1}{x(x+1)}}{\frac{x-(x+1)}{x(x+1)}}$$

$$= \frac{2x+1}{-1}$$

$$= -2x - 1$$