Year 10 Term 2 Homework

Student Name:	Grade:
Date:	Score:

Table of contents

10	Year	10 Ter	m 2 Week 10 Homework	1
	10.1	Trigon	ometry with Right-angled Triangles	1
		10.1.1	The definition of the trigonometric ration	1
		10.1.2	Finding the length of a side	2
		10.1.3	Finding the size of an angle	2
		10.1.4	Evaluating trigonometric expressions	2
		10.1.5	Angles of elevation and depression	3
		10.1.6	The tangent ratio $[\tan = \frac{\sin \theta}{\cos \theta}]$	3
		10.1.7	The complementary results $[\sin \theta = \cos (90^\circ - \theta) \text{ and } \cos \theta = \sin (90^\circ - \theta)]$.	4
		10.1.8	The exact values	4
		10.1.9	Compass bearings	5
		10.1.10	True bearings	6
		10.1.11	Opposite bearings	7
		10.1.12	2 Miscellaneous exercises	9

This edition was printed on March 14, 2022 with Worked Solutions.

Camera ready copy was prepared with the LATEX2e typesetting system.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

10.1 Trigonometry with Right-angled Triangles

10.1.1 The definition of the trigonometric ration

The definitions of the trigonometric ratio are:

• $\sin \theta = \frac{opposite}{hypotenuse} = \frac{O}{H}$

•
$$\cos \theta = \frac{adjacent}{hypotenuse} = \frac{A}{H}$$

• $\tan \theta = \frac{opposite}{adjacent} = \frac{O}{A}$

An easy way of remembering these important formulae is:

S	0	Η	С	Α	Н	Т	0	А
Some	old	houses	can	always	hide	their	old	age

Exercise 10.1.1

1. Find without simplifying, the value of each ratio below:

2. Find the value of each pronumeral, correct to 1 decimal place.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

10.1.2 Finding the length of a side

Exercise 10.1.2

- 1. In $\triangle ABC$, $\angle A = 90^{\circ}$, $\angle C = 62^{\circ}45'$ and BC = 70 cm. Find the length of AB, correct to 1 decimal place.
- 2. In $\triangle LMN$, $\angle M = 90^{\circ}$, $\angle L = 73^{\circ}21'$ and LM = 36.7 cm. Find the length of LN, correct to 1 decimal place.

10.1.3 Finding the size of an angle

Exercise 10.1.3

- 1. In $\triangle FGH$, $\angle H = 90^{\circ}$, GH = 19 cm and FH = 10 cm. Find $\angle F$, correct to the nearest minute.
- 2. In $\triangle IJK$, $\angle I = 90^{\circ}$, IK = 12.7 cm and JK = 15.9 cm. Find $\angle K$, correct to the nearest minute.

10.1.4 Evaluating trigonometric expressions

Exercise 10.1.4

- 1. Find the value of $\frac{\tan 76^{\circ}19'}{\cos 12^{\circ}36' \sin 64^{\circ}10'}$, correct to 2 decimal places.
- 2. If $\tan \theta = 3.6816$, find the acute angle θ , correct to nearest minute.

10.1.5 Angles of elevation and depression

- The angle of elevation is the angle between the horizontal and the line of sight when the observer is looking upward.
- The angle of depression is the angle between the horizontal and the line of sight when the observer is looking downward.

Exercise 10.1.5

- 1. A water pipe runs along the slope of a 295 m high hill. The pipe is 372 m long. At what angle is the pipe inclined to the horizontal? Answer to the nearest minute.
- 2. A man standing on top of a cliff of height 165 m looks down to a boat that is anchored 115 m form the base of the cliff. Find the angle of depression of the boat from the top of the cliff, correct to the nearest minute.

10.1.6 The tangent ratio $[\tan = \frac{\sin \theta}{\cos \theta}]$

Exercise 10.1.6

- 1. Find the value of $\tan \theta$ in each of the following, where θ is an acute angle. Hence find the size of the angle θ , correct to the nearest minute.
 - (a) $\sin\theta = \frac{8}{17}$ and $\cos\theta = \frac{15}{17}$
 - (b) $\sin \theta = 0.7910 \text{ and } \cos \theta = 0.6118$
 - (c) $\sin \theta = \frac{\sqrt{2}}{3}$ and $\cos \theta = \frac{\sqrt{7}}{3}$
- 2. In the equations below, θ is an acute angle. Express each equation in terms of $\tan \theta$, than solve for θ , correct to the nearest minute.

(a)
$$\frac{1}{\cos\theta} = \frac{8}{\sin\theta}$$

(b) $\frac{\sqrt{5}}{\cos\theta} = \frac{2}{\sin\theta}$

3. prove that $\frac{\sin\theta\cos\theta}{\tan\theta} = \cos^2\theta$.

10.1.7 The complementary results $[\sin \theta = \cos (90^\circ - \theta) \text{ and } \cos \theta = \sin (90^\circ - \theta)]$

Exercise 10.1.7

1.	Find	d the value of x in each of these:	
	(a) s	$\sin 60^\circ = \cos x^\circ$	
	(<i>b</i>) c	$\cos x^\circ = \sin 25^\circ$	
2.	Solv	ve each of these equations:	
	(a)	$\cos(2x+56)^\circ = \sin 14^\circ$	
	(b)) $\sin 40^\circ = \cos(\frac{x}{2})^\circ$	
	(c)	$\sin(x+15)^\circ = \cos(x-6)^\circ$	
3.	Simp	plify the following expressions:	
	(00)	$\sin (90^\circ - \theta)$	
	(b)) $\sin\theta\cos\left(90^\circ-\theta\right)$	
	(c)) $\sin (90^\circ - \theta) \times \cos (90^\circ - \theta) \times \tan (90^\circ - \theta)$	

10.1.8 The exact values

The exact values for the trigonometric ratios are summarised in the table shown below:

θ	30°	45°	60°	θ	30°	45°	60°	θ	30°	45°	60°
$\sin \theta$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\tan \theta$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Exercise 10.1.8 Find the exact value of each expression.

- $1. \sin 30^\circ + \cos 45^\circ + \tan 60^\circ$
- 2. $\cos^2 60^\circ \cos^2 30^\circ$
- 3. $\cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$

10.1.9 Compass bearings

- A compass bearing is a deviation involving the four cardinal directions north, south, east and west.
- Compass bearings are always measured from the north or south and towards the east or west.
- A bearing such as NE means $N45^{\circ}W$. SE means $S45^{\circ}E$, etc..

Example 10.1.1

- *1.* The bearing of A from P is $N30^{\circ}E$
- 2. The bearing of B from P is $S50^{\circ}E$
- 3. The bearing of C from P is $S65^{\circ}W$
- 4. The bearing of D from P is $N72^{\circ}W$

Exercise 10.1.9 Find the compass bearings from P of the points A, B and C.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

10.1.10 True bearings

- A true bearing is a deviation from north, measured in a clockwise direction.
- By convention, a true bearing is written using 3 digits.

Example 10.1.2

- 1. Point J is $060^{\circ}T$
- 2. Point K is $140^{\circ}T$
- 3. Point L is $195^{\circ}T$
- 4. Point M is $324^{\circ}T$

Exercise 10.1.10 Find the true bearings from P of the points X,Y and Z

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

10.1.11 Opposite bearings

- The opposite bearing of B form A is the bearing of A from B.
- To find the bearing of A from B given the bearing of B from A:
 - draw a compass at B and mark on this compass the angle from north around to the ray BA
 - on the compass with centre A, find the acute angle between BA and the north-south axis
 - use parallel line properties to find the required bearing on the compass with centre B.
- Opposite bearings always differ by 180°

Example 10.1.3 The bearing of Q from P is 310°. Find the bearing of P from Q.

Solution: $\angle NPQ = 360^{\circ} - 310^{\circ} = 50^{\circ}$ $\angle N'QP = 180^{\circ} - 50^{\circ} = 130^{\circ}$ (co-interior $\angle s$, and N'Q||NP) \therefore The bearing of P from Q is 130°.

Exercise 10.1.11 Find the size of $\angle PQR$ for the figures given below:

1. In the left hand figure, the bearing of Q from P is 034° and the bearing of Q from R is 025° .

2. In the right hand figure, the bearing of *R* from *P* is 165° and the bearing of *Q* from *R* is 315°.

Exercise 10.1.12 Consolidation

- 1. Emma walked from home (H) to a shopping centre (C) on a bearing of 032°. After the shopping, she walked on a bearing of 122° to a friend's house (F) 850 m due east of her home.
 - (a) Find the value of $\angle HCF$.
 - (b) Find the distance between Emma's home and the shopping centre, correct to nearest metre.
- 2. David drove from home(H) to the beach (B) on a bearing of 254° to pick up his children. He then drove to the cinema (C) on a bearing of 344°, which is 9600 m due west of his home.
 - (a) Show that $\angle HBC = 90^{\circ}$.
 - (b) Find the distance between the beach and the cinema, correct to nearest metre.
- *3.* Two cards A and B left home at the same time. Car A travelled due west at 70 km/h whilst car B travelled due north at 90 km/h. Find after 3 hours:
 - (a) the distance between two cars, correct to the nearest kilometre.
 - (b) the bearing of B from A, correct to nearest degree.

10.1.12 Miscellaneous exercises

Exercise 10.1.13

- 1. Given that $V = \frac{1}{3}\pi R^2 H$ and R > 0, find R if V = 2000 and H = 12. Give your answer correct to one decimal place.
- 2. In 2008 Council rates increased by $7\frac{1}{2}$ %. The new rate for a property is \$865. What was the old rate for this property? Give your answer correct to the nearest dollar.

Exercise 10.1.14 The point P an Q have coordinates (3, -2) and (1, 3) respectively.

- 1. The line K has equation 4x + 5y 2 = 0. Verify that P lies on K.
- 2. The lines L through Q has gradient $\frac{1}{3}$. Show that the equation of is x 3y + 8 = 0

- 3. The point of intersection of K and L is R. Find the coordinates of R.
- 4. Find the perpendicular distance of P from L. Give your answer in simplest surd form.