Year 10 Term 2 Homework Worked Solutions

Student Name:	Grade:	
Date:	Score:	

Table of contents

10	Year	10 Term 2 Week 10 Homework Solutions	1
	10.1	Trigonometry with Right-angled Triangles	1
		10.1.1 The definition of the trigonometric ration	1
		10.1.2 Finding the length of a side	2
		10.1.3 Finding the size of an angle	2
		10.1.4 Evaluating trigonometric expressions	2
		10.1.5 Angles of elevation and depression	3
		10.1.6 The tangent ratio $[\tan = \frac{\sin \theta}{\cos \theta}]$	3
		10.1.7 The complementary results $[\sin \theta = \cos (90^\circ - \theta) \text{ and } \cos \theta = \sin (90^\circ - \theta)]$.	4
		10.1.8 The exact values	4
		10.1.9 Compass bearings	5
		10.1.10 True bearings	6
		10.1.11 Opposite bearings	7
		10.1.12 Miscellaneous exercises	9

This edition was printed on March 14, 2022.

Camera ready copy was prepared with the LATEX2e typesetting system.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

10 Year 10 Term 2 Week 10 Homework Solutions

10.1 Trigonometry with Right-angled Triangles

10.1.1 The definition of the trigonometric ration

The definitions of the trigonometric ratio are:

• $\sin \theta = \frac{opposite}{hypotenuse} = \frac{O}{H}$

•
$$\cos \theta = \frac{adjacent}{hypotenuse} = \frac{A}{H}$$

• $\tan \theta = \frac{opposite}{adjacent} = \frac{O}{A}$

An easy way of remembering these important formulae is:

S	0	Н	С	Α	Н	ТО	А
Some	old	houses	can	always	hide	their old	age

Exercise 10.1.1

1. Find without simplifying, the value of each ratio below:

2. Find the value of each pronumeral, correct to 1 decimal place.

10.1.2 Finding the length of a side

Exercise 10.1.2

1. In $\triangle ABC$, $\angle A = 90^{\circ}$, $\angle C = 62^{\circ}45'$ and BC = 70 cm. Find the length of AB, correct to 1 decimal place.

Solution:
$$\sin 62^{\circ}45' = \frac{AB}{70} \Rightarrow AB = 70 \times \sin 62^{\circ}45' = 62.2 \, cm.$$

2. In $\triangle LMN$, $\angle M = 90^{\circ}$, $\angle L = 73^{\circ}21'$ and LM = 36.7 cm. Find the length of LN, correct to 1 decimal place.

Solution:
$$\cos 73^{\circ}21' = \frac{36.7}{LN} \Rightarrow LN = \frac{36.7}{\cos 73^{\circ}21'} = 128.1 \, cm.$$

10.1.3 Finding the size of an angle

Exercise 10.1.3

1. In $\triangle FGH$, $\angle H = 90^{\circ}$, GH = 19 cm and FH = 10 cm. Find $\angle F$, correct to the nearest minute.

Solution:
$$\tan F = \frac{19}{10} \Rightarrow \angle F = \tan^{-1}\left(\frac{19}{10}\right) = 62^{\circ}14'.$$

2. In $\triangle IJK$, $\angle I = 90^{\circ}$, IK = 12.7 cm and JK = 15.9 cm. Find $\angle K$, correct to the nearest minute.

Solution:
$$\cos K = \frac{12.7}{15.9} \Rightarrow \angle K = \cos^{-1}\left(\frac{12.7}{15.9}\right) = 36^{\circ}59'.$$

10.1.4 Evaluating trigonometric expressions

Exercise 10.1.4

1. Find the value of $\frac{\tan 76^{\circ}19'}{\cos 12^{\circ}36'-\sin 64^{\circ}10'}$, correct to 2 decimal places.

Solution: $\frac{\tan 76^{\circ}19'}{\cos 12^{\circ}36' - \sin 64^{\circ}10'} = 54.15.$

2. If $\tan \theta = 3.6816$, find the acute angle θ , correct to nearest minute.

Solution: $\angle \theta = \tan^{-1}(3.6816) = 74^{\circ}48'.$

10.1.5 Angles of elevation and depression

- The angle of elevation is the angle between the horizontal and the line of sight when the observer is looking upward.
- The angle of depression is the angle between the horizontal and the line of sight when the observer is looking downward.

Exercise 10.1.5

1. A water pipe runs along the slope of a 295 m high hill. The pipe is 372 m long. At what angle is the pipe inclined to the horizontal? Answer to the nearest minute.

Solution:
$$\sin \theta = \frac{295}{372} \Rightarrow \angle \theta = \sin^{-1} \left(\frac{295}{372}\right) = 52^{\circ}28'$$

2. A man standing on top of a cliff of height 165 m looks down to a boat that is anchored 115 m form the base of the cliff. Find the angle of depression of the boat from the top of the cliff, correct to the nearest minute.

Solution: $\angle \theta = \tan^{-1} \left(\frac{165}{115} \right) = 55^{\circ}07'.$

10.1.6 The tangent ratio $[\tan = \frac{\sin \theta}{\cos \theta}]$

Exercise 10.1.6

- 1. Find the value of $\tan \theta$ in each of the following, where θ is an acute angle. Hence find the size of the angle θ , correct to the nearest minute.
 - (a) $\sin \theta = \frac{8}{17}$ and $\cos \theta = \frac{15}{17}$ [Answer: $\tan \theta = \frac{8}{17} \div \frac{15}{17} = \frac{8}{17} \times \frac{17}{15} = \frac{8}{15} \Rightarrow \angle \theta = 28^{\circ}04'$]. (b) $\sin \theta = 0.7910$ and $\cos \theta = 0.6118$ [Answer: $\tan \theta = \frac{0.791}{0.6118} \Rightarrow \angle \theta = 52^{\circ}17'$.]. (c) $\sin \theta = \frac{\sqrt{2}}{3}$ and $\cos \theta = \frac{\sqrt{7}}{3}$ [Answer: $\tan \theta = \frac{\sqrt{2}}{\sqrt{7}} \Rightarrow \angle \theta = 28^{\circ}08'$.].
- 2. In the equations below, θ is an acute angle. Express each equation in terms of $\tan \theta$, than solve for θ , correct to the nearest minute.

(a)
$$\frac{1}{\cos\theta} = \frac{8}{\sin\theta}$$
 [Answer: $\tan\theta = 8 \Rightarrow \angle\theta = \tan^{-1}(8) = 82^{\circ}52'$.].
(b) $\frac{\sqrt{5}}{\cos\theta} = \frac{2}{\sin\theta}$ [Answer: $\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{2}{\sqrt{5}} \Rightarrow \angle\theta = \tan^{-1}(\frac{2}{\sqrt{5}}) = 41^{\circ}49'$].

3. prove that $\frac{\sin\theta\cos\theta}{\tan\theta} = \cos^2\theta$.

Solution: $LHS = \sin\theta \times \cos\theta \div \frac{\sin\theta}{\cos\theta} = \sin\theta \times \cos\theta \times \frac{\cos\theta}{\sin\theta} = \cos^2\theta = RHS.$

10.1.7 The complementary results $[\sin \theta = \cos (90^\circ - \theta) \text{ and } \cos \theta = \sin (90^\circ - \theta)]$

Exercise 10.1.7

1. Find the value of x in each of these:

(a) $\sin 60^\circ = \cos x^\circ$ [Answer: $90^\circ - 60^\circ = 30^\circ$]. (b) $\cos x^\circ = \sin 25^\circ$ [Answer: $90^\circ - 25^\circ = 65^\circ$].

- 2. Solve each of these equations:
 - (a) $\cos(2x+56)^\circ = \sin 14^\circ$ [Answer: $2x + 56^\circ = 90^\circ 14^\circ \Rightarrow x = 10^\circ$].
 - (b) $\sin 40^\circ = \cos(\frac{x}{2})^\circ$ [Answer: $\frac{x}{2} = 50^\circ \Rightarrow x = 100^\circ$].
 - (c) $\sin(x+15)^\circ = \cos(x-6)^\circ$ [Answer: $x+15^\circ = 90 (x-6^\circ) \Rightarrow x = 40^\circ 30'$].

3. Simplify the following expressions:

(a) $\frac{\cos\theta}{\sin(90^\circ-\theta)}$

$$\frac{\cos\theta}{\cos\theta} = 1$$

(b) $\sin\theta\cos(90^\circ-\theta)$

Solution:

Solution:
$$\sin \theta \times \sin \theta = \sin^2 \theta.$$

(c)
$$\sin (90^\circ - \theta) \times \cos (90^\circ - \theta) \times \tan (90^\circ - \theta)$$

Solution:	$= \sin(90^\circ - \theta) \times \cos(90^\circ - \theta) \times \frac{\sin(90^\circ - \theta)}{\cos(90 - \theta)}$
	$=\sin^2(90^\circ-\theta)=\cos^2\theta.$

10.1.8 The exact values

The exact values for the trigonometric ratios are summarised in the table shown below:

θ	30°	45°	60°	θ	30°	45°	60°	θ	30°	45°	60°
$\sin \theta$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	an heta	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Exercise 10.1.8 Find the exact value of each expression.

- *I*. $\sin 30^\circ + \cos 45^\circ + \tan 60^\circ$ [*Answer*: $\frac{1}{2} + \frac{1}{\sqrt{2}} + \sqrt{3} = \frac{1}{2} + \frac{\sqrt{2}}{2} + \frac{2\sqrt{3}}{2} = \frac{1+\sqrt{2}+2\sqrt{3}}{2}$].
- 2. $\cos^2 60^\circ \cos^2 30^\circ$ [Answer: $(\frac{1}{2})^2 (\frac{\sqrt{3}}{2})^2 = \frac{1}{4} \frac{3}{4} = -\frac{1}{2}$].
- 3. $\cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ} \qquad [Answer: \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}].$

10.1.9 Compass bearings

- A compass bearing is a deviation involving the four cardinal directions north, south, east and west.
- Compass bearings are always measured from the north or south and towards the east or west.
- A bearing such as NE means $N45^{\circ}W$. SE means $S45^{\circ}E$, etc..

Example 10.1.1

- 1. The bearing of A from P is $N30^{\circ}E$
- 2. The bearing of B from P is $S50^{\circ}E$
- 3. The bearing of C from P is $S65^{\circ}W$
- 4. The bearing of D from P is $N72^{\circ}W$

Exercise 10.1.9 Find the compass bearings from P of the points A, B and C.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

10.1.10 True bearings

- A true bearing is a deviation from north, measured in a clockwise direction.
- By convention, a true bearing is written using 3 digits.

Example 10.1.2

- 1. Point J is $060^{\circ}T$
- 2. Point K is $140^{\circ}T$
- 3. Point L is $195^{\circ}T$
- *4. Point* M *is* $324^{\circ}T$

Exercise 10.1.10 Find the true bearings from P of the points X,Y and Z

10.1.11 Opposite bearings

- The opposite bearing of B form A is the bearing of A from B.
- To find the bearing of A from B given the bearing of B from A:
 - draw a compass at B and mark on this compass the angle from north around to the ray BA
 - on the compass with centre A, find the acute angle between BA and the north-south axis
 - use parallel line properties to find the required bearing on the compass with centre B.
- Opposite bearings always differ by 180°

Example 10.1.3 The bearing of Q from P is 310°. Find the bearing of P from Q.

Solution: $\angle NPQ = 360^{\circ} - 310^{\circ} = 50^{\circ}$ $\angle N'QP = 180^{\circ} - 50^{\circ} = 130^{\circ}$ (co-interior $\angle s$, and N'Q||NP) \therefore The bearing of P from Q is 130°.

Exercise 10.1.11 Find the size of $\angle PQR$ for the figures given below:

1. In the left hand figure, the bearing of Q from P is 034° and the bearing of Q from R is 025° .

Solution: $\angle PQR = 155^\circ - 146^\circ = 9^\circ.$

2. In the right hand figure, the bearing of R from P is 165° and the bearing of Q from R is 315° .

Solution:

 $\angle PQR = 315^{\circ} - 180^{\circ} = 135^{\circ}.$

Exercise 10.1.12 Consolidation

- 1. Emma walked from home (H) to a shopping centre (C) on a bearing of 032°. After the shopping, she walked on a bearing of 122° to a friend's house (F) 850 m due east of her home.
 - (a) Find the value of $\angle HCF$.

```
Solution:

\angle HCF = 32^{\circ} + (180^{\circ} - 122^{\circ}) = 90^{\circ}.
or \angle HCF = 212^{\circ} - (180^{\circ} + 32^{\circ}) = 90^{\circ}.
```

(b) Find the distance between Emma's home and the shopping centre, correct to nearest metre.

Solution:
$$\angle CHF = 58^\circ, \Rightarrow \cos 58^\circ = \frac{x}{850} \Rightarrow \therefore x = 850 \times \cos 58^\circ = 450 m.$$

- 2. David drove from home(H) to the beach (B) on a bearing of 254° to pick up his children. He then drove to the cinema (C) on a bearing of 344°, which is 9600 m due west of his home.
 - (a) Show that $\angle HBC = 90^{\circ}$.

Solution:

$$\angle a = 270^{\circ} - 254^{\circ} = 16^{\circ}, \ \angle b = 74^{\circ}, \ \angle c = 16^{\circ}.$$

 $\angle HBC = \angle b + \angle c = 74^{\circ} + 16^{\circ} = 90^{\circ}.$

(b) Find the distance between the beach and the cinema, correct to nearest metre.

Solution:
$$\sin a = \frac{BC}{CH} \Rightarrow BC = CH \times \sin 16^\circ = 9600 \times \sin 16^\circ = 2646 m$$

- 3. Two cards A and B left home at the same time. Car A travelled due west at 70 km/h whilst car B travelled due north at 90 km/h. Find after 3 hours:
 - (a) the distance between two cars, correct to the nearest kilometre.

Solution:

$$a = 3 \times 70 = 210 \, km, \ b = 3 \times 90 = 270 \, km.$$

 $c = \sqrt{a^2 + b^2} = \sqrt{210^2 + 270^2} = 342 \, km.$

(b) the bearing of B from A, correct to nearest degree.

Solution: $\tan \theta = \frac{b}{a} = \frac{270}{210} \implies \theta = 52^{\circ}07' \approx 52^{\circ}$ $\therefore \text{ the bearing of B from } A = 90^{\circ} - 52^{\circ} = 38^{\circ}$

10.1.12 Miscellaneous exercises

Exercise 10.1.13

1. Given that $V = \frac{1}{3}\pi R^2 H$ and R > 0, find R if V = 2000 and H = 12. Give your answer correct to one decimal place.

Solution: $V = \frac{1}{3}\pi R^2 H \Rightarrow \therefore 2000 = \frac{1}{3}\pi R^2(12) \Rightarrow R = \frac{2000}{4\pi} = 12.6156 \approx 12.6$

2. In 2008 Council rates increased by $7\frac{1}{2}$ %. The new rate for a property is \$865. What was the old rate for this property? Give your answer correct to the nearest dollar.

Solution:	old rate + $7\frac{1}{2}\%$ of old rate = new rate $\Rightarrow x + 7.5\%x = 865$
	$\Rightarrow 1.075x = 865 \therefore x = \$804.65 = \$805$

Exercise 10.1.14 The point P an Q have coordinates (3, -2) and (1, 3) respectively.

1. The line K has equation 4x + 5y - 2 = 0. Verify that P lies on K.

Solution:
$$LHS = 4x + 5y - 2 = 4 \times (3) + 5 \times (-2) - 2 = 0 = RHS \implies \therefore P \text{ lies on } K.$$

2. The lines L through Q has gradient $\frac{1}{3}$. Show that the equation of is x - 3y + 8 = 0

Solution:
Equation of line L through
$$Q(1, 3)$$
 with gradient $\frac{1}{3}$ is given by:
 $y - y_1 = m(x - x_1) \Rightarrow y - 3 = \frac{1}{3}(x - 1) \Rightarrow x - 3y + 8 = 0$

3. The point of intersection of K and L is R. Find the coordinates of R.

Solution:
$$\begin{cases} K: 4x + 5y - 2 = 0...(1) \\ L: x - 3y + 8 = 0 ...(2) \end{cases} \Rightarrow y = 2, x = -2, \Rightarrow \therefore R \equiv (-2, 2).$$

4. Find the perpendicular distance of P from L. Give your answer in simplest surd form.

Solution:
$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} = \frac{|(1)(3) + (-3)(-2) + 8|}{\sqrt{1^2 + (-3)^2}} = \frac{17}{\sqrt{10}} = \frac{17\sqrt{10}}{10}$$
 units.