Year 10 Term 2 Homework Worked Solutions

Student Name: __	
Drade:	
Date:	Score:

Table of contents

10 Year 10 Term 2 Week 10 Homework Solutions 1
10.1 Trigonometry with Right-angled Triangles 1
10.1.1 The definition of the trigonometric ration 1
10.1.2 Finding the length of a side 2
10.1.3 Finding the size of an angle 2
10.1.4 Evaluating trigonometric expressions 2
10.1.5 Angles of elevation and depression 3
10.1.6 The tangent ratio $\left[\tan =\frac{\sin \theta}{\cos \theta}\right]$ 3
10.1.7 The complementary results $\left[\sin \theta=\cos \left(90^{\circ}-\theta\right)\right.$ and $\left.\cos \theta=\sin \left(90^{\circ}-\theta\right)\right]$ 4
10.1.8 The exact values 4
10.1.9 Compass bearings 5
10.1.10 True bearings 6
10.1.11 Opposite bearings 7
10.1.12 Miscellaneous exercises 9

This edition was printed on March 14, 2022.
Camera ready copy was prepared with the $\mathbf{I A T}_{\mathbf{E}} \mathbf{X} \mathbf{2 e}$ typesetting system.
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

10 Year 10 Term 2 Week 10 Homework Solutions

10.1 Trigonometry with Right-angled Triangles

10.1.1 The definition of the trigonometric ration

The definitions of the trigonometric ratio are:

- $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{O}{H}$
- $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A}{H}$
- $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{O}{A}$

An easy way of remembering these important formulae is:

S	O	H	C	A	H	T	O	A
Some	old	houses	can	always	hide	their	old	age

Exercise 10.1.1

1. Find without simplifying, the value of each ratio below:

(a) $\sin \angle F E G \quad\left[\right.$ Answer: $\frac{7}{25}$]. ; (b) $\cos \angle F E G \quad$ [Answer: $\frac{24}{25}$]. ;
(c) $\tan \angle F G E \quad$ Answer: $\left.\frac{24}{7}\right]$; (d) $\sin \angle F H E$
(e) $\cos \angle F H E$
; (f) $\tan \angle F E H$
$\frac{\left[\text { Answer: } \frac{24}{30}\right]}{\left[\text { Answer: } \frac{18}{24}\right] .}$;
2. Find the value of each pronumeral, correct to 1 decimal place.
(A)

(B)

A $P=\quad$ [Answer: $\left.\tan 56^{\circ} 24^{\prime}=\frac{P}{20} \Rightarrow P=20 \times \tan 56^{\circ} 24^{\prime}=30.1 \mathrm{~cm}\right]$.
B $Q=\quad$ [Answer: $\left.\sin 25^{\circ} 30^{\prime}=\frac{Q}{25} \Rightarrow Q=25 \times \sin 25^{\circ} 30^{\prime}=10.8 \mathrm{~cm}.\right]$.

10.1.2 Finding the length of a side

Exercise 10.1.2

1. In $\triangle A B C, \angle A=90^{\circ}, \angle C=62^{\circ} 45^{\prime}$ and $B C=70 \mathrm{~cm}$. Find the length of $A B$, correct to 1 decimal place.

Solution: $\quad \sin 62^{\circ} 45^{\prime}=\frac{A B}{70} \Rightarrow A B=70 \times \sin 62^{\circ} 45^{\prime}=62.2 \mathrm{~cm}$.
2. In $\triangle L M N, \angle M=90^{\circ}, \angle L=73^{\circ} 21^{\prime}$ and $L M=36.7 \mathrm{~cm}$. Find the length of $L N$, correct to 1 decimal place.

$$
\text { Solution: } \quad \cos 73^{\circ} 21^{\prime}=\frac{36.7}{L N} \Rightarrow L N=\frac{36.7}{\cos 73^{\circ} 21^{\prime}}=128.1 \mathrm{~cm}
$$

10.1.3 Finding the size of an angle

Exercise 10.1.3

1. In $\triangle F G H, \angle H=90^{\circ}, G H=19 \mathrm{~cm}$ and $F H=10 \mathrm{~cm}$. Find $\angle F$, correct to the nearest minute.

$$
\text { Solution: } \quad \tan F=\frac{19}{10} \Rightarrow \angle F=\tan ^{-1}\left(\frac{19}{10}\right)=62^{\circ} 14^{\prime}
$$

2. In $\triangle I J K, \angle I=90^{\circ}, I K=12.7 \mathrm{~cm}$ and $J K=15.9 \mathrm{~cm}$. Find $\angle K$, correct to the nearest minute.

Solution: $\quad \cos K=\frac{12.7}{15.9} \Rightarrow \angle K=\cos ^{-1}\left(\frac{12.7}{15.9}\right)=36^{\circ} 59^{\prime}$.

10.1.4 Evaluating trigonometric expressions

Exercise 10.1.4

1. Find the value of $\frac{\tan 76^{\circ} 19^{\prime}}{\cos 12^{\circ} 36^{\prime}-\sin 64^{\circ} 10^{\prime}}$, correct to 2 decimal places.

$$
\text { Solution: } \quad \frac{\tan 76^{\circ} 19^{\prime}}{\cos 12^{\circ} 36^{\prime}-\sin 64^{\circ} 10^{\prime}}=54.15
$$

2. If $\tan \theta=3.6816$, find the acute angle θ, correct to nearest minute.

$$
\text { Solution: } \quad \angle \theta=\tan ^{-1}(3.6816)=74^{\circ} 48^{\prime}
$$

10.1.5 Angles of elevation and depression

- The angle of elevation is the angle between the horizontal and the line of sight when the observer is looking upward.
- The angle of depression is the angle between the horizontal and the line of sight when the observer is looking downward.

Exercise 10.1.5

1. A water pipe runs along the slope of a 295 m high hill. The pipe is 372 m long. At what angle is the pipe inclined to the horizontal? Answer to the nearest minute.

$$
\text { Solution: } \quad \sin \theta=\frac{295}{372} \Rightarrow \angle \theta=\sin ^{-1}\left(\frac{295}{372}\right)=52^{\circ} 28^{\prime}
$$

2. A man standing on top of a cliff of height 165 m looks down to a boat that is anchored 115 m form the base of the cliff. Find the angle of depression of the boat from the top of the cliff, correct to the nearest minute.

$$
\text { Solution: } \quad \angle \theta=\tan ^{-1}\left(\frac{165}{115}\right)=55^{\circ} 07^{\prime}
$$

10.1.6 The tangent ratio $\left[\tan =\frac{\sin \theta}{\cos \theta}\right]$

Exercise 10.1.6

1. Find the value of $\tan \theta$ in each of the following, where θ is an acute angle. Hence find the size of the angle θ, correct to the nearest minute.
(a) $\sin \theta=\frac{8}{17}$ and $\cos \theta=\frac{15}{17} \quad$ [Answer: $\left.\tan \theta=\frac{8}{17} \div \frac{15}{17}=\frac{8}{17} \times \frac{17}{15}=\frac{8}{15} \Rightarrow \angle \theta=28^{\circ} 04^{\prime}\right]$.
(b) $\sin \theta=0.7910$ and $\cos \theta=0.6118 \quad$ [Answer: $\tan \theta=\frac{0.791}{0.6118} \Rightarrow \angle \theta=52^{\circ} 17^{\prime}$.].
(c) $\sin \theta=\frac{\sqrt{2}}{3}$ and $\cos \theta=\frac{\sqrt{7}}{3}$
$\underline{\left.\text { [Answer: } \tan \theta=\frac{\sqrt{2}}{\sqrt{7}} \Rightarrow \angle \theta=28^{\circ} 08^{\prime} .\right] .}$
2. In the equations below, θ is an acute angle. Express each equation in terms of $\tan \theta$, than solve for θ, correct to the nearest minute.
(a) $\frac{1}{\cos \theta}=\frac{8}{\sin \theta} \quad$ [Answer: $\left.\tan \theta=8 \Rightarrow \angle \theta=\tan ^{-1}(8)=82^{\circ} 52^{\prime}.\right]$.
(b) $\frac{\sqrt{5}}{\cos \theta}=\frac{2}{\sin \theta} \quad\left[\right.$ Answer: $\left.\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{2}{\sqrt{5}} \Rightarrow \angle \theta=\tan ^{-1}\left(\frac{2}{\sqrt{5}}\right)=41^{\circ} 49^{\prime}\right]$.
3. prove that $\frac{\sin \theta \cos \theta}{\tan \theta}=\cos ^{2} \theta$.

Solution: $L H S=\sin \theta \times \cos \theta \div \frac{\sin \theta}{\cos \theta}=\sin \theta \times \cos \theta \times \frac{\cos \theta}{\sin \theta}=\cos ^{2} \theta=R H S$.
10.1.7 The complementary results $\left[\sin \theta=\cos \left(90^{\circ}-\theta\right)\right.$ and $\left.\cos \theta=\sin \left(90^{\circ}-\theta\right)\right]$

Exercise 10.1.7

1. Find the value of x in each of these:
(a) $\sin 60^{\circ}=\cos x^{\circ}$
[Answer: $\left.90^{\circ}-60^{\circ}=30^{\circ}\right]$.
(b) $\cos x^{\circ}=\sin 25^{\circ}$
$\left[\right.$ Answer: $\left.90^{\circ}-25^{\circ}=65^{\circ}\right]$.
2. Solve each of these equations:
(a) $\cos (2 x+56)^{\circ}=\sin 14^{\circ} \quad\left[\right.$ Answer: $\left.2 x+56^{\circ}=90^{\circ}-14^{\circ} \Rightarrow x=10^{\circ}\right]$.
(b) $\sin 40^{\circ}=\cos \left(\frac{x}{2}\right)^{\circ} \quad\left[\right.$ Answer: $\left.\frac{x}{2}=50^{\circ} \Rightarrow x=100^{\circ}\right]$.
(c) $\sin (x+15)^{\circ}=\cos (x-6)^{\circ} \quad$ [Answer: $\left.x+15^{\circ}=90-\left(x-6^{\circ}\right) \Rightarrow x=40^{\circ} 30^{\prime}\right]$.
3. Simplify the following expressions:
(a) $\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}$
Solution: $\quad \frac{\cos \theta}{\cos \theta}=1$
(b) $\sin \theta \cos \left(90^{\circ}-\theta\right)$

$$
\text { Solution: } \quad \sin \theta \times \sin \theta=\sin ^{2} \theta
$$

(c) $\sin \left(90^{\circ}-\theta\right) \times \cos \left(90^{\circ}-\theta\right) \times \tan \left(90^{\circ}-\theta\right)$

Solution:

$$
\begin{aligned}
& =\sin \left(90^{\circ}-\theta\right) \times \cos \left(90^{\circ}-\theta\right) \times \frac{\sin \left(90^{\circ}-\theta\right)}{\cos (90-\theta)} \\
& =\sin ^{2}\left(90^{\circ}-\theta\right)=\cos ^{2} \theta .
\end{aligned}
$$

10.1.8 The exact values

The exact values for the trigonometric ratios are summarised in the table shown below:

θ	30°	45°	60°	θ	30°	45°	60°	θ	30°	45°	60°
$\sin \theta$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\tan \theta$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Exercise 10.1.8 Find the exact value of each expression.

1. $\sin 30^{\circ}+\cos 45^{\circ}+\tan 60^{\circ}$

$$
\left[\text { Answer: } \frac{1}{2}+\frac{1}{\sqrt{2}}+\sqrt{3}=\frac{1}{2}+\frac{\sqrt{2}}{2}+\frac{2 \sqrt{3}}{2}=\frac{1+\sqrt{2}+2 \sqrt{3}}{2}\right] .
$$

2. $\cos ^{2} 60^{\circ}-\cos ^{2} 30^{\circ} \quad$ [Answer: $\left.\left(\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{1}{4}-\frac{3}{4}=-\frac{1}{2}\right]$.
3. $\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \quad\left[\right.$ Answer: $\left.\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{4}\right]$.

10.1.9 Compass bearings

- A compass bearing is a deviation involving the four cardinal directions north, south, east and west.
- Compass bearings are always measured from the north or south and towards the east or west.
- A bearing such as NE means $N 45^{\circ} W$. SE means $S 45^{\circ} E$, etc..

Example 10.1.1

1. The bearing of A from P is $N 30^{\circ} E$
2. The bearing of B from P is $S 50^{\circ} E$
3. The bearing of C from P is $S 65^{\circ} \mathrm{W}$
4. The bearing of D from P is $N 72^{\circ} W$

Exercise 10.1.9 Find the compass bearings from P of the points A, B and C.
a

b

c

a Point $A \quad\left[=N 59^{\circ} E\right]$. Point $B \quad\left[=S 15^{\circ} E\right]$., Point $C \quad\left[=N 66^{\circ} \mathrm{W}\right]$.
b Point $A \quad\left[=S 74^{\circ} E\right]$., Point $B \quad\left[=S 61^{\circ} \mathrm{W}\right]$., Point $C \quad\left[=N 9^{\circ} \mathrm{W}\right]$.
c Point A $\underline{\left[=N 72^{\circ} E\right] ., \text { Point } B \quad\left[=S 33^{\circ} \mathrm{W}\right] ., \text { Point } C \quad\left[=N 44^{\circ} W\right] .}$

10.1.10 True bearings

- A true bearing is a deviation from north, measured in a clockwise direction.
- By convention, a true bearing is written using 3 digits.

Example 10.1.2

1. Point J is $060^{\circ} T$
2. Point K is $140^{\circ} T$
3. Point L is $195^{\circ} \mathrm{T}$
4. Point M is $324^{\circ} T$

Exercise 10.1.10 Find the true bearings from P of the points X, Y and Z

a

b

c

a Point A $\quad\left[=050^{\circ} \mathrm{T}\right]$. , Point B $\quad\left[=165^{\circ} \mathrm{T}\right]$. , Point $C \quad \underline{\left[=294^{\circ} \mathrm{T}\right]}$.
b Point A $\quad\left[=106^{\circ} \mathrm{T}\right]$., Point $B \quad\left[=241^{\circ} \mathrm{T}\right]$., Point $C \quad\left[=351^{\circ} \mathrm{T}\right]$.
c Point A $\quad\left[=072^{\circ} T\right]$, Point B $\quad\left[=213^{\circ} T\right]$., Point $C \quad\left[=316^{\circ} T\right]$.

10.1.11 Opposite bearings

- The opposite bearing of B form A is the bearing of A from B.
- To find the bearing of A from B given the bearing of B from A :
- draw a compass at B and mark on this compass the angle from north around to the ray BA
- on the compass with centre A, find the acute angle between BA and the north-south axis
- use parallel line properties to find the required bearing on the compass with centre B.
- Opposite bearings always differ by 180°

Example 10.1.3 The bearing of \mathbf{Q} from \mathbf{P} is 310°. Find the bearing of \mathbf{P} from \mathbf{Q}.

Solution: $\angle N P Q=360^{\circ}-310^{\circ}=50^{\circ}$
$\angle N^{\prime} Q P=180^{\circ}-50^{\circ}=130^{\circ}\left(\right.$ co-interior $\angle s$, and $\left.N^{\prime} Q \| N P\right)$
\therefore The bearing of P from Q is 130°.

Exercise 10.1.11 Find the size of $\angle P Q R$ for the figures given below:

1. In the left hand figure, the bearing of Q from P is 034° and the bearing of Q from R is 025°.

Solution:

$$
\angle P Q R=155^{\circ}-146^{\circ}=9^{\circ} .
$$

2. In the right hand figure, the bearing of R from P is 165° and the bearing of Q from R is 315°.

$$
\text { Solution: } \quad \angle P Q R=315^{\circ}-180^{\circ}=135^{\circ} \text {. }
$$

Exercise 10.1.12 Consolidation

1. Emma walked from home (H) to a shopping centre (C) on a bearing of 032°. After the shopping, she walked on a bearing of 122° to a friend's house $(F) 850 \mathrm{~m}$ due east of her home.
(a) Find the value of $\angle H C F$.

$$
\text { Solution: } \quad \begin{aligned}
\angle H C F & =32^{\circ}+\left(180^{\circ}-122^{\circ}\right)
\end{aligned}=90^{\circ} .
$$

(b) Find the distance between Emma's home and the shopping centre, correct to nearest metre.

Solution: $\angle C H F=58^{\circ}, \Rightarrow \cos 58^{\circ}=\frac{x}{850} \Rightarrow \therefore x=850 \times \cos 58^{\circ}=450 \mathrm{~m}$.
2. David drove from home (H) to the beach (B) on a bearing of 254° to pick up his children. He then drove to the cinema (C) on a bearing of 344°, which is 9600 m due west of his home.
(a) Show that $\angle H B C=90^{\circ}$.

$$
\text { Solution: } \quad \angle a=270^{\circ}-254^{\circ}=16^{\circ}, \angle b=74^{\circ}, \angle c=16^{\circ} .
$$

(b) Find the distance between the beach and the cinema, correct to nearest metre.

$$
\text { Solution: } \quad \sin a=\frac{B C}{C H} \Rightarrow B C=C H \times \sin 16^{\circ}=9600 \times \sin 16^{\circ}=2646 \mathrm{~m}
$$

3. Two cards A and B left home at the same time. Car A travelled due west at $70 \mathrm{~km} / \mathrm{h}$ whilst car B travelled due north at $90 \mathrm{~km} / \mathrm{h}$. Find after 3 hours:
(a) the distance between two cars, correct to the nearest kilometre.

$$
\begin{aligned}
& \text { Solution: } \\
& a=3 \times 70=210 \mathrm{~km}, b=3 \times 90=270 \mathrm{~km} . \\
& c=\sqrt{a^{2}+b^{2}}=\sqrt{210^{2}+270^{2}}=342 \mathrm{~km} .
\end{aligned}
$$

(b) the bearing of B from A, correct to nearest degree.

Solution:

$$
\begin{aligned}
& \quad \tan \theta=\frac{b}{a}=\frac{270}{210} \Rightarrow \theta=52^{\circ} 07^{\prime} \approx 52^{\circ} \\
& \therefore \text { the bearing of } B \text { from } A=90^{\circ}-52^{\circ}=38^{\circ}
\end{aligned}
$$

10.1.12 Miscellaneous exercises

Exercise 10.1.13

1. Given that $V=\frac{1}{3} \pi R^{2} H$ and $R>0$, find R if $V=2000$ and $H=12$. Give your answer correct to one decimal place.

Solution: $\quad V=\frac{1}{3} \pi R^{2} H \Rightarrow 2000=\frac{1}{3} \pi R^{2}(12) \Rightarrow R=\frac{2000}{4 \pi}=12.6156 \approx 12.6$
2. In 2008 Council rates increased by $7 \frac{1}{2} \%$. The new rate for a property is $\$ 865$. What was the old rate for this property? Give your answer correct to the nearest dollar.

$$
\begin{aligned}
& \text { Solution: } \quad \text { old rate }+7 \frac{1}{2} \% \text { of old rate }=\text { new rate } \Rightarrow x+7.5 \% x=865 \\
& \Rightarrow 1.075 x=865 \therefore x=\$ 804.65=\$ 805
\end{aligned}
$$

Exercise 10.1.14 The point P an Q have coordinates (3, -2) and (1,3) respectively.

1. The line K has equation $4 x+5 y-2=0$. Verify that P lies on K.

Solution: $L H S=4 x+5 y-2=4 \times(3)+5 \times(-2)-2=0=R H S \Rightarrow \therefore$ Plies on K.
2. The lines L through Q has gradient $\frac{1}{3}$. Show that the equation of is $x-3 y+8=0$

Solution: \quad Equation of line L through $Q(1,3)$ with gradient $\frac{1}{3}$ is given by:
$y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-3=\frac{1}{3}(x-1) \Rightarrow x-3 y+8=0$
3. The point of intersection of K and L is R. Find the coordinates of R.

Solution:

$$
\left\{\begin{array}{l}
K: 4 x+5 y-2=0 \ldots(1) \\
L: x-3 y+8=0 \ldots(2)
\end{array} \quad \Rightarrow y=2, x=-2, \Rightarrow \therefore R \equiv(-2,2) .\right.
$$

4. Find the perpendicular distance of P from L. Give your answer in simplest surd form.

Solution:

$$
D=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}=\frac{|(1)(3)+(-3)(-2)+8|}{\sqrt{1^{2}+(-3)^{2}}}=\frac{17}{\sqrt{10}}=\frac{17 \sqrt{10}}{10} \text { units. }
$$

