Year 10 Term 2 Homework

Student Name: ___	
Drade:	
Date:	Score:

Table of contents

1 Year 10 Term 2 Week 1 Homework 1
1.1 Deductive geometry 1
1.1.1 Congruent triangles 1
1.2 Deductive proofs involving quadrilaterals 4
1.3 Miscellaneous exercises 8

1 Year 10 Term 2 Week 1 Homework

1.1 Deductive geometry

1.1.1 Congruent triangles

If two triangles are congruent, then:

- the matching sides are equal in length.
- the matching angles are equal in size.
- the figures are equal in area.
- If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent (SSS).

- If two sides and the included angle of one of triangle are equal to two sides and the included angle of another triangle, then the two triangles are congruent (SAS).

- If two angles and one side of one triangle are equal to two angles and the matching side of another triangle, then the two triangles are congruent (AAS).

- If the hypotenuse and a second side of one right-angled triangle are equal to the hypotenuse and a second of another right-angled triangle, then the two triangles are congruent(RHS).

To prove that two triangles are congruent:

- Identify the triangles that are being used in the proof and name the three pairs of equal sides or angles.
- Name the congruent triangles, giving the vertices of the triangles in the matching order, and state the congruence test used.

Exercise 1.1.1

1. Prove that $\triangle D E F \equiv \triangle H G F$.

\qquad
\qquad
\qquad
\qquad
\qquad
2. Prove that $\triangle M L K \equiv \triangle M N K$.

Exercise 1.1.2

1. O is the centre of the circle and $O J \perp I K$. Prove that $O J$ bisects $\angle I O K$.

\qquad
\qquad
\qquad
\qquad
\qquad
2. In the isosceles triangle $P Q R, P Q=P R . Q X=R Y$.

(a) Prove that $\triangle P Q X \equiv \triangle P R Y$.
\qquad
\qquad
\qquad
\qquad
(b) Hence, show that $\triangle P X Y$ is isosceles.
\qquad
\qquad
\qquad
\qquad

1.2 Deductive proofs involving quadrilaterals

Exercise 1.2.1 ABCD is a parallelogram. The diagonals AC and BD meet at \mathbf{P}.

1. Prove that $\triangle A P B \equiv \triangle C P D$.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Hence show that $A P=P C$ and $D P=P B$.
\qquad
\qquad
\qquad
\qquad
\qquad

3. What property of a parallelogram have you proven?
\qquad
\qquad
\qquad
\qquad

Exercise 1.2.2 ABCD is a parallelogram. The diagonals $A C$ and $B D$ meet at R. A line $P Q$ is drawn through R, where P lies on $A B$ and Q lies on DC.

1. Prove that $\triangle B P R \equiv \triangle D Q R$.
2. Hence show that $P B=D Q$ and $A P=Q C$.

Exercise 1.2.3 ABCD is a rhombus. The diagonals AC and BD meet at P. Let $\angle C A B=\alpha$ and $\angle A B D=\beta$.

1. Explain why $\angle B C A=\alpha$ and $\angle C B D=\beta$.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Find the value of $\alpha+\beta$.
\qquad
\qquad
\qquad
\qquad
\qquad

3. Hence, explain why $A C \perp B D$.

Exercise 1.2.4 ABCD is a parallelogram. $B D$ is produced to E and $D B$ is produced to F such that $D E=B F$.

1. Show that $\angle F B C=\angle A D E$.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Prove that $\triangle F B C \equiv \triangle E D A$.
\qquad
\qquad
\qquad
\qquad
\qquad
3. Hence prove that AFCE is a parallelogram.

1.3 Miscellaneous exercises

Exercise 1.3.1 O is the centre of the circle an $A B=C D$. Prove that $\angle A O B=\angle C O D$.

Exercise 1.3.2 In the isosceles triangle $\mathbf{A B C} . \mathbf{A B}=\mathbf{A C} . C L \perp A B$ and $B M \perp A C$.

1. Prove that $\triangle B L C \equiv \triangle C M B$.
\qquad
\qquad
\qquad
\qquad
2. Prove that $\triangle B L N \equiv \triangle C M N$.
\qquad
\qquad
\qquad
\qquad
3. Hence show that $L N=M N$
\qquad
\qquad
\qquad
\qquad

Exercise 1.3.3

1. The length of a rectangle is 8 cm greater than its breadth. If the area of the rectangle is $345 \mathrm{~cm}^{2}$, find the perimeter of the rectangle.
\qquad
\qquad
\qquad
2. The product of two positive integers is 112 and the larger number is 6 more than the smaller number. Find the numbers.
\qquad
\qquad
\qquad
3. Solve the following equations, giving the solutions correct to 2 decimal places where necessary.
(a) $x^{2}-25=2 x+10$
\qquad
\qquad
\qquad
(b) $x+\frac{16}{x}=8$
\qquad
\qquad
\qquad
\qquad
(c) $\frac{3}{x}-\frac{7 x}{2}=4$
\qquad
\qquad
\qquad
\qquad

Exercise 1.3.4

1. Find the value of the pronumeral in the figure. Hence calculate the surface area.

\qquad
\qquad
\qquad
\qquad
2. Find the value of the pronumeral in the figure. Hence calculate the surface area.

\qquad
\qquad
\qquad
\qquad
3. Find the surface area and the volume of the figure shown below:

