Year 10 Term 2 Homework Worked Solutions

Student Name:	Grade:
Date:	Score:

Table of contents

Year	10 Term 2 Week 1 Homework Solutions	1
1.1	Deductive geometry	1
	1.1.1 Congruent triangles	1
1.2	Deductive proofs involving quadrilaterals	4
1.3	Miscellaneous exercises	8
	1.1 1.2	Year 10 Term 2 Week 1 Homework Solutions 1.1 Deductive geometry 1.1.1 Congruent triangles 1.2 Deductive proofs involving quadrilaterals 1.3 Miscellaneous exercises

This edition was printed on March 14, 2022.

Camera ready copy was prepared with the LATEX2e typesetting system.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

1 Year 10 Term 2 Week 1 Homework Solutions

1.1 Deductive geometry

1.1.1 Congruent triangles

If two triangles are congruent, then:

- the matching sides are equal in length.
- the matching angles are equal in size.
- the figures are equal in area.
- If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent (SSS).

• If two sides and the included angle of one of triangle are equal to two sides and the included angle of another triangle, then the two triangles are congruent (SAS).

• If two angles and one side of one triangle are equal to two angles and the matching side of another triangle, then the two triangles are congruent (AAS).

• If the hypotenuse and a second side of one right-angled triangle are equal to the hypotenuse and a second of another right-angled triangle, then the two triangles are congruent(**RHS**).

To prove that two triangles are congruent:

- Identify the triangles that are being used in the proof and name the three pairs of equal sides or angles.
- Name the congruent triangles, giving the vertices of the triangles in the matching order, and state the congruence test used.

Exercise 1.1.1

1. Prove that $\triangle DEF \equiv \triangle HGF$ *.*

Solution:	$\angle EDF = \angle GHF$, (alternative angles)
	$\angle EFD = \angle GFH$ (vertically opposite)
	$\angle DEF = \angle FGH$ (Alternative angles)
	$DF = FH, \Rightarrow \therefore \triangle DEF \equiv \triangle HGF \ (AAS).$

2. Prove that $\triangle MLK \equiv \triangle MNK$.

Exercise 1.1.2

1. *O* is the centre of the circle and $OJ \perp IK$. Prove that OJ bisects $\angle IOK$.

2. In the isosceles triangle PQR, PQ = PR. QX = RY.

(a) Prove that $\triangle PQX \equiv \triangle PRY$.

Se	olution:	PQ = PR (given)
		QX = RY (given)
		$\angle PQX = \angle PRY$ (Base angles of isosceles)
		$\therefore \ \triangle PQX \equiv \triangle PRY \ (SAS).$

(b) Hence, show that $\triangle PXY$ is isosceles.

Solution:	PX = PY (matching sides of congruent triangles)
	$\therefore \triangle PXY$ is an isosceles triangle.

1.2 Deductive proofs involving quadrilaterals

Exercise 1.2.1 ABCD is a parallelogram. The diagonals AC and BD meet at P.

1. Prove that $\triangle APB \equiv \triangle CPD$ *.*

Solution:	$\angle ABP = \angle PDC$ (alternative angles, AB DC)
	$\angle BAP = \angle PCD$ (alternative angles, AB DC)
	AB = DC Opposite sides of a parallelogram.
	$\therefore \ \triangle APB \equiv \triangle CPD \ (AAS).$

2. Hence show that AP = PC and DP = PB.

Solution:	AP = PC (Matching sides of congruent triangles)
	BP = PD (Matching sides of congruent triangles.)

3. What property of a parallelogram have you proven?

Exercise 1.2.2 ABCD is a parallelogram. The diagonals AC and BD meet at R. A line PQ is drawn through R, where P lies on AB and Q lies on DC.

1. Prove that $\triangle BPR \equiv \triangle DQR$ *.*

$\angle PBR = \angle RDC$ (alternative angles AB DC)
$\angle BPR = \angle PQD$ (alternative angles AB BC)
BR = RD (AC bisects BD)
$\therefore \ \triangle BPR \equiv \triangle DQR \ (AAS).$

2. Hence show that PB = DQ and AP = QC.

Exercise 1.2.3 ABCD is a rhombus. The diagonals AC and BD meet at P. Let $\angle CAB = \alpha$ and $\angle ABD = \beta$.

1. Explain why $\angle BCA = \alpha$ and $\angle CBD = \beta$.

Solution: $\angle BCA = \alpha$ (base angles of isosceles trinagle, AB = BC) $\angle CBD = \beta$ (diagonal of a rhombus bisect the angle at the vertex.)

2. Find the value of $\alpha + \beta$.

Solution:	$2\alpha + 2\beta = 180^{\circ}, \Rightarrow \therefore \alpha + \beta = 90^{\circ}$	

3. Hence, explain why $AC \perp BD$ *.*

Exercise 1.2.4 ABCD is a parallelogram. BD is produced to E and DB is produced to F such that DE = BF.

1. Show that $\angle FBC = \angle ADE$.

Solution:	Let $\angle DBC = \alpha$, $\Rightarrow \angle ADB = \alpha$ (alternative angles, AB DC)
	$\angle FBC = 180^\circ - \alpha$, and $\angle ADE = 180^\circ - \alpha$
	$\therefore \ \angle FBC = \angle ADE \ (both \ equal \ to \ 180^{\circ} - \alpha)$

2. *Prove that* $\triangle FBC \equiv \triangle EDA$.

Solution:	$\angle FBC = \angle ADE$ (proven above)
	BC = AD (opposite sides of a parallelogram)
	BF = ED (given)
	$\therefore \ \triangle FBC \equiv \triangle EDA \ (SAS).$

3. Hence prove that AFCE is a parallelogram.

1.3 Miscellaneous exercises

Exercise 1.3.1 O is the centre of the circle an AB = CD**. Prove that** $\angle AOB = \angle COD$ **.**

Solution:	OA = OD (equal radii)	
	OB = OC (equal radii)	
	AB = CD (given)	
	$\therefore \ \triangle AOB \equiv \triangle COD \ (SSS).$	
	$\angle AOB = \angle COD$ (matching angles of congruent angles).	

Exercise 1.3.2 In the isosceles triangle ABC. AB = AC. $CL \perp AB$ and $BM \perp AC$.

1. Prove that $\triangle BLC \equiv \triangle CMB$ *.*

Solution:	$\angle ABC = \angle ACB$ (base angles of isosceles triangle.)		
	$\angle BLC = \angle CMB = 90^{\circ} (CL \perp AB, BM \perp AC.)$		
	BC is a common side $\therefore \triangle BLC \equiv \triangle CMB \ (AAS).$		

2. Prove that $\triangle BLN \equiv \triangle CMN$.

Solution:	BL = CM (matching sides of congruent triangles)
	$\angle BLN = \angle CMN = 90^{\circ} (CL \perp AB, BM \perp AC.)$
	$\angle BNL = \angle CNM$ (vertically opposite angles)
	$\therefore \triangle BLN \equiv \triangle CMN \ (AAS).$

3. Hence show that LN = MN

Exercise 1.3.3

1. The length of a rectangle is 8 cm greater than its breadth. If the area of the rectangle is 345cm², find the perimeter of the rectangle.

Solution:	$\begin{cases} x+8 = y \dots (1) \\ xy = 345 \dots (2) \end{cases}$	$\Rightarrow x = 15 cm, and y = 23 cm$
	$\therefore P = (15 + 23) \times$	2 = 76 cm.

2. The product of two positive integers is 112 and the larger number is 6 more than the smaller number. Find the numbers.

Solution:
$$\begin{cases} A \times B = 112...(1) \\ A = B + 6...(2) \end{cases} \Rightarrow A(A - 6) = 112, \Rightarrow A^2 - 6A - 112 = 0.$$

$$\therefore A = 8, \text{ and } B = 14.$$

- 3. Solve the following equations, giving the solutions correct to 2 decimal places where necessary.
 - (a) $x^2 25 = 2x + 10$

Solution:
$$x^2 - 25 = 2x + 10 \Rightarrow x^2 - 2x - 35 = 0 \Rightarrow (x - 7)(x + 5) = 0$$

 $\therefore x = 7, \text{ or } x = -5.$

(b) $x + \frac{16}{x} = 8$

Solution:
$$x + \frac{16}{x} = 8 \Rightarrow x^2 + 16 = 8x \Rightarrow x^2 - 8x + 16 = 0,$$

 $\Rightarrow (x - 4)^2 \Rightarrow \therefore x = 4.$

(c) $\frac{3}{x} - \frac{7x}{2} = 4$

Solution:

$$\frac{3}{x} - \frac{7x}{2} = 4 \implies 6 - 7x^2 = 8x \implies 7x^2 + 8x - 6 = 0$$

$$a = 7, b = 8, \text{ and } c = -6 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-8 \pm \sqrt{8^2 - 4 \times 7 \times (-6)}}{2 \times 7},$$

$$\therefore x = \frac{-8 \pm 2\sqrt{58}}{14} = \frac{-4 \pm \sqrt{58}}{7} \text{ or } x_1 = 0.52, x_2 = -1.66.$$

Exercise 1.3.4

1. Find the value of the pronumeral in the figure. Hence calculate the surface area.

Solution:

$$h = \sqrt{25^2 - 7^2} = 24 \, cm$$

$$A_1 = \frac{1}{2} \times 24 \times 14 = 168 \, cm^2$$

$$A = 2 \times 168 + 2 \times 25 \times 72 + 14 \times 72 = 4944 \, cm^2.$$

2. Find the value of the pronumeral in the figure. Hence calculate the surface area.

Solution:

$$y = \sqrt{15^2 + 8^2} = 17 \, cm$$

$$A_1 = \frac{1}{2}(6 + 14) \times 15 = 150 \, cm^2.$$

$$A = 2 \times 150 + 6 \times 60 + 14 \times 10 + 10 \times 15 + 17 \times 10 = 820 \, cm^2.$$

3. Find the surface area and the volume of the figure shown below:

Solution:

$$A_1 = \frac{1}{2}(0.8 + 2) \times 12 = 16.8 m^2$$

$$A = 0.8 \times 7 + 16.8 \times 2 + 7 \times 2 + 7 \times 12 + 7 \times 12.1 = 221.9 m^2.$$

$$V = 16.8 \times 7 = 117.6 m^3.$$