Year 10 Term 2 Homework Worked Solutions

Student Name: __	
Drade:	
Date:	Score:

Table of contents

1 Year 10 Term 2 Week 1 Homework Solutions 1
1.1 Deductive geometry 1
1.1.1 Congruent triangles 1
1.2 Deductive proofs involving quadrilaterals 4
1.3 Miscellaneous exercises 8

This edition was printed on March 14, 2022.
Camera ready copy was prepared with the $\mathbf{I A T}_{\mathbf{E}} \mathbf{X} 2 \mathrm{e}$ typesetting system.
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

1 Year 10 Term 2 Week 1 Homework Solutions

1.1 Deductive geometry

1.1.1 Congruent triangles

If two triangles are congruent, then:

- the matching sides are equal in length.
- the matching angles are equal in size.
- the figures are equal in area.
- If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent (SSS).

- If two sides and the included angle of one of triangle are equal to two sides and the included angle of another triangle, then the two triangles are congruent (SAS).

- If two angles and one side of one triangle are equal to two angles and the matching side of another triangle, then the two triangles are congruent (AAS).

- If the hypotenuse and a second side of one right-angled triangle are equal to the hypotenuse and a second of another right-angled triangle, then the two triangles are congruent(RHS).

To prove that two triangles are congruent:

- Identify the triangles that are being used in the proof and name the three pairs of equal sides or angles.
- Name the congruent triangles, giving the vertices of the triangles in the matching order, and state the congruence test used.

Exercise 1.1.1

1. Prove that $\triangle D E F \equiv \triangle H G F$.

Solution:

$$
\begin{aligned}
& \angle E D F=\angle G H F, \text { (alternative angles) } \\
& \angle E F D=\angle G F H \text { (vertically opposite) } \\
& \angle D E F=\angle F G H \text { (Alternative angles) } \\
& D F=F H, \Rightarrow \triangle D E F \equiv \triangle H G F(A A S) .
\end{aligned}
$$

2. Prove that $\triangle M L K \equiv \triangle M N K$.

Solution:

$$
\begin{aligned}
& M L=M N \text { (Given) } \\
& M K=M K \text { (Commont side) } \\
& \angle M K L=\angle M K N=90^{\circ}(\text { Given }) \\
& \therefore \triangle M L K=\triangle M N K(\text { RHS }) .
\end{aligned}
$$

Exercise 1.1.2

1. O is the centre of the circle and $O J \perp I K$. Prove that $O J$ bisects $\angle I O K$.

$$
\begin{array}{ll}
\text { Solution: } & O I=O K \text { (equal radio) } \\
& O J \text { is a common side. } \\
\angle O J I=\angle O J K=90^{\circ} \quad(O J \perp I K) \\
& \because \triangle O I J \equiv \triangle O K J(\text { RHS }) \\
& \therefore \angle I O J=\angle K O J \text { (matching angles) } \\
\therefore O J \text { bisects } \angle I O K .
\end{array}
$$

2. In the isosceles triangle $P Q R, P Q=P R . Q X=R Y$.

(a) Prove that $\triangle P Q X \equiv \triangle P R Y$.

Solution:

$$
\begin{aligned}
& P Q=P R \text { (given) } \\
& Q X=R Y \text { (given) } \\
& \angle P Q X=\angle P R Y \text { (Base angles of isosceles) } \\
& \therefore \triangle P Q X \equiv \triangle P R Y \text { (SAS). }
\end{aligned}
$$

(b) Hence, show that $\triangle P X Y$ is isosceles.

Solution:

$P X=P Y$ (matching sides of congruent triangles)
$\therefore \triangle P X Y$ is an isosceles triangle.

1.2 Deductive proofs involving quadrilaterals

Exercise 1.2.1 ABCD is a parallelogram. The diagonals AC and BD meet at \mathbf{P}.

1. Prove that $\triangle A P B \equiv \triangle C P D$.

Solution:

$$
\begin{aligned}
& \angle A B P=\angle P D C \text { (alternative angles, } A B \| D C \text {) } \\
& \angle B A P=\angle P C D \text { (alternative angles, } A B \| D C \text {) } \\
& A B=D C \text { Opposite sides of a parallelogram. } \\
& \therefore \triangle A P B \equiv \triangle C P D(A A S) .
\end{aligned}
$$

2. Hence show that $A P=P C$ and $D P=P B$.

$$
\text { Solution: } \quad \begin{aligned}
A P & =P C \text { (Matching sides of congruent triangles) } \\
B P & =P D(\text { Matching sides of congruent triangles. })
\end{aligned}
$$

3. What property of a parallelogram have you proven?

Solution:

> diagonals of a parallelogram bisect each other.

Exercise 1.2.2 ABCD is a parallelogram. The diagonals $A C$ and $B D$ meet at R. A line $P Q$ is drawn through R, where P lies on $A B$ and Q lies on DC.

1. Prove that $\triangle B P R \equiv \triangle D Q R$.
```
Solution:
\[
\begin{aligned}
& \angle P B R=\angle R D C \text { (alternative angles } A B \| D C \text { ) } \\
& \angle B P R=\angle P Q D \text { (alternative angles } A B \| B C \text { ) } \\
& B R=R D(A C \text { bisects } B D) \\
& \therefore \triangle B P R \equiv \triangle D Q R(A A S) .
\end{aligned}
\]
```

2. Hence show that $P B=D Q$ and $A P=Q C$.

$$
\begin{array}{ll}
\text { Solution: } \quad & P B=D Q \text { (matching sides of congruent triangles.) } \\
A B=D C \text { (opposite sides of a parallelogram) } \\
A B-P B=D C-D Q \\
\therefore A P=Q C .
\end{array}
$$

Exercise 1.2.3 ABCD is a rhombus. The diagonals AC and BD meet at P. Let $\angle C A B=\alpha$ and $\angle A B D=\beta$.

1. Explain why $\angle B C A=\alpha$ and $\angle C B D=\beta$.

Solution: $\quad \angle B C A=\alpha$ (base angles of isosceles trinagle, $A B=B C$)
$\angle C B D=\beta$ (diagonal of a rhombus bisect the angle at the vertex.)
2. Find the value of $\alpha+\beta$.

$$
\text { Solution: } \quad 2 \alpha+2 \beta=180^{\circ}, \Rightarrow \therefore \alpha+\beta=90^{\circ}
$$

3. Hence, explain why $A C \perp B D$.

Solution:

$$
\begin{aligned}
& \angle B P C=\alpha+\beta, \text { (exterior angle of } \triangle A B P \text {) } \\
& \therefore \angle B P C=90^{\circ} \\
& \therefore A C \perp B D . \text { (diagonals ofa rhombus are perpendicular to each other.) }
\end{aligned}
$$

Exercise 1.2.4 ABCD is a parallelogram. $B D$ is produced to E and $D B$ is produced to F such that $D E=B F$.

1. Show that $\angle F B C=\angle A D E$.

$$
\text { Solution: } \quad \begin{aligned}
\text { Let } \angle D B C=\alpha, & \Rightarrow \angle A D B=\alpha \text { (alternative angles, } A B \| D C \text {) } \\
& \angle F B C=180^{\circ}-\alpha, \text { and } \angle A D E=180^{\circ}-\alpha \\
& \left.\therefore \angle F B C=\angle A D E \text { (both equal to } 180^{\circ}-\alpha\right)
\end{aligned}
$$

2. Prove that $\triangle F B C \equiv \triangle E D A$.

$$
\text { Solution: } \quad \begin{array}{ll}
\angle F B C=\angle A D E \text { (proven above) } \\
B C=A D \text { (opposite sides of a parallelogram) } \\
& B F=E D \text { (given) } \\
& \therefore \triangle F B C \equiv \triangle E D A(S A S) .
\end{array}
$$

3. Hence prove that $A F C E$ is a parallelogram.

Solution:

$$
\angle B F C=\angle D E A(\text { matching angles of congruent triangles })
$$

$\therefore F C \| A E$ (Alternative angles are equal)
\therefore AFCE is a parallelogram. (one pair opposite side equal and parallel.)

1.3 Miscellaneous exercises

Exercise 1.3.1 O is the centre of the circle an $A B=C D$. Prove that $\angle A O B=\angle C O D$.

$$
\text { Solution: } \quad \begin{array}{ll}
O A=O D(\text { equal radii) } \\
O B=O C \text { (equal radii) } \\
A B=C D(\text { given }) \\
\therefore \triangle A O B \equiv \triangle C O D(S S S) . \\
\angle A O B=\angle C O D \text { (matching angles of congruent angles). }
\end{array}
$$

Exercise 1.3.2 In the isosceles triangle $\mathbf{A B C} . \mathbf{A B}=\mathbf{A C} . C L \perp A B$ and $B M \perp A C$.

1. Prove that $\triangle B L C \equiv \triangle C M B$.

Solution: $\quad \begin{aligned} & \angle A B C=\angle A C B \text { (base angles of isosceles triangle.) } \\ & \angle B L C=\angle C M B=90^{\circ}(C L \perp A B, B M \perp A C .) \\ & B C \text { is a common side } \therefore \triangle B L C \equiv \triangle C M B(A A S) .\end{aligned}$
2. Prove that $\triangle B L N \equiv \triangle C M N$.

$$
\begin{array}{ll}
\text { Solution: } & B L=C M \text { (matching sides of congruent triangles) } \\
\angle B L N=\angle C M N=90^{\circ}(C L \perp A B, B M \perp A C .) \\
\angle B N L=\angle C N M \text { (vertically opposite angles) } \\
\therefore \triangle B L N \equiv \triangle C M N(A A S) .
\end{array}
$$

3. Hence show that $L N=M N$

Solution: $\quad L N=M N$ (Matching sides of congruent triangles).

Exercise 1.3.3

1. The length of a rectangle is 8 cm greater than its breadth. If the area of the rectangle is $345 \mathrm{~cm}^{2}$, find the perimeter of the rectangle.

Solution:	$\left\{\begin{array}{l}x+8=y \ldots(1) \\ x y=345 \ldots(2)\end{array} \Rightarrow x=15 \mathrm{~cm}\right.$, and $y=23 \mathrm{~cm}$
$\therefore P=(15+23) \times 2=76 \mathrm{~cm}$.	

2. The product of two positive integers is 112 and the larger number is 6 more than the smaller number. Find the numbers.

Solution: $\left\{\begin{array}{l}A \times B=112 \ldots(1) \\ A=B+6 \ldots(2)\end{array} \Rightarrow A(A-6)=112, \Rightarrow A^{2}-6 A-112=0\right.$.

$$
\therefore A=8 \text {, and } B=14 \text {. }
$$

3. Solve the following equations, giving the solutions correct to 2 decimal places where necessary.
(a) $x^{2}-25=2 x+10$

Solution: $\quad x^{2}-25=2 x+10 \Rightarrow x^{2}-2 x-35=0 \Rightarrow(x-7)(x+5)=0$ $\therefore x=7$, or $x=-5$.
(b) $x+\frac{16}{x}=8$

$$
\begin{aligned}
\text { Solution: } \quad x+\frac{16}{x}=8 & \Rightarrow x^{2}+16=8 x \Rightarrow x^{2}-8 x+16=0, \\
\Rightarrow(x-4)^{2} & \Rightarrow \therefore x=4 .
\end{aligned}
$$

(c) $\frac{3}{x}-\frac{7 x}{2}=4$

Solution:

$$
\begin{aligned}
& \frac{3}{x}-\frac{7 x}{2}=4 \Rightarrow 6-7 x^{2}=8 x \Rightarrow 7 x^{2}+8 x-6=0 \\
& a=7, b=8, \text { and } c=-6 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&=\frac{-8 \pm \sqrt{8^{2}-4 \times 7 \times(-6)}}{2 \times 7}, \\
& \therefore x=\frac{-8 \pm 2 \sqrt{58}}{14}=\frac{-4 \pm \sqrt{58}}{7} \text { or } x_{1}=0.52, x_{2}=-1.66 .
\end{aligned}
$$

Exercise 1.3.4

1. Find the value of the pronumeral in the figure. Hence calculate the surface area.

Solution:

$$
\begin{aligned}
& h=\sqrt{25^{2}-7^{2}}=24 \mathrm{~cm} \\
& A_{1}=\frac{1}{2} \times 24 \times 14=168 \mathrm{~cm}^{2} \\
& A=2 \times 168+2 \times 25 \times 72+14 \times 72=4944 \mathrm{~cm}^{2} .
\end{aligned}
$$

2. Find the value of the pronumeral in the figure. Hence calculate the surface area.

Solution: $\quad y=\sqrt{15^{2}+8^{2}}=17 \mathrm{~cm}$

$$
\begin{aligned}
& A_{1}=\frac{1}{2}(6+14) \times 15=150 \mathrm{~cm}^{2} . \\
& A=2 \times 150+6 \times 60+14 \times 10+10 \times 15+17 \times 10=820 \mathrm{~cm}^{2} .
\end{aligned}
$$

3. Find the surface area and the volume of the figure shown below:

Solution:

$$
\begin{aligned}
& A_{1}=\frac{1}{2}(0.8+2) \times 12=16.8 \mathrm{~m}^{2} \\
& A=0.8 \times 7+16.8 \times 2+7 \times 2+7 \times 12+7 \times 12.1=221.9 \mathrm{~m}^{2} . \\
& V=16.8 \times 7=117.6 \mathrm{~m}^{3} .
\end{aligned}
$$

