Year 11 Math Homework

Student Name:	Grade:
Date:	Score:

Table of Contents

2	Year	11 Topic 2 — The Language of Sets	1
	2.1	Describing Sets	1
	2.2	Equal Sets	1
	2.3	Members and Non-members	1
	2.4	The Size of a Set	1
	2.5	The Empty Set	2
	2.6	Subsets of Sets	2
	2.7	Unions and Intersections	3
	2.8	The Universal Set and the Complement of a Set	3
	2.9	Venn Diagrams	4
	2.10	The Counting Rule for Sets	4
	2.11	Lewis Carroll's Bilateral Diagrams	6
	2.12	Lewis Carroll's Trilateral Diagrams	6

This edition was printed on September 23, 2021 with Worked Solutions. Camera ready copy was prepared with the $I \neq T_E X2e$ typesetting system. Copyright © 2000 - 2021 Yimin Math Centre

2 Year 11 Topic 2 — The Language of Sets

2.1 Describing Sets

- A set is a defined collection of objects.
- These objects are known as *members*.
- Sets can be described by listing the members inside curly brackets:
 - $S = \{2, 4, 6, 8, 10\}$
 - Read as 'S is the set whose members are 2, 4, 6, 8, 10'.
- Alteratively it can be done by writing a description such as:
 - $T = \{ even integers from 0 to 10 \}$
 - Read as 'T is the set of even integers from 0 to 10'.

2.2 Equal Sets

- If two sets have exactly the same members, they are equal.
- The order in which the members are written doesn't matter, neither does repetition.
- For example: $\{a, b, c, d\} = \{a, d, c, b, a\} = \{b, c, a, d, a, c, b\}$

2.3 Members and Non-members

- The symbol \in means 'is a member of'.
- The symbol \notin means 'is not a member of'.
- For example, if $B = \{a, b, c, d, e\}$, then $a \in B$ and $c \in B$ but $f \notin B$.

2.4 The Size of a Set

- A set may be finite or infinite.
- If a set S is finite, then |S| is the symbol for the number of members in S.
- For example: $|\{a, e, i, o, u\}| = 5$
- Keep in mind: $5 \in \{5\}$ and $5 \neq |\{5\}|$ and $|\{5\}| = 1$.

2.5 The Empty Set

- The symbol \emptyset represents the empty set.
- The empty set is finite and its number of members is zero.

- ie; $|\emptyset| = 0$

Exercise 2.5.1 State whether each set is finite/infinite. If it is finite, state the number of members:

- 1. {2, 4, 6, 8, ...}

 2. {0, 1, 2, 3, ...9}

 3. {a, b, e, f, g, i, p, a, e}

 4. {multiples of 5 that are less than 100}
- 5. $\{n : n \text{ is a positive integer and } l < n < 25\}$

2.6 Subsets of Sets

- A set of B is called a subset of a set of C if every member of B is a member of C.
- This notation is written as $B \subset C$.
- The symbol $\not\subset$ means 'not a subset of'.
- For example: $\{children in Australia\} \subset \{people in Australia\}$ but $\{a, b, c\} \not\subset \{a, b, d, e\}$

Exercise 2.6.1 State whether each of the following statements is true or false:

1.	If $A = \{0, 0\}$, then $ A = 1$.
2.	$ \{0\} = 0.$
3.	$ \{1,1\} = 1.$
4.	If two sets have the same number of members, then they are equal.
5.	If two sets are equal, then they have the same number of members.
6.	If $A \subset B$ and $B \subset A$, then $A = B$.
7.	If $A \subset B$ and $B \subset C$, then $A \subset C$.
8.	$ \{20, 21, 22, 23, \dots 40\} = 20.$

2.7 Unions and Intersections

- The union $A \cup B$ of two sets A and B is the set of everything belonging to A, B or both.
- The intersection $A \cap B$ is the set of everything belonging to both A and B.
- For example, if $A = \{a, b, c, d, e\}$ and $B = \{a, c, f\}$, then $A \cup B = \{a, b, c, d, e, f\}$ and $A \cap B = \{a, c\}$.
- Two sets A and B are called disjointed if they have no members in common, ie; $A \cap B = \emptyset$.
- In short, 'Or' means Union, 'And' means Intersection.

2.8 The Universal Set and the Complement of a Set

- A universal set is the set of everything under discussion in a particular situation.
- Once a universal set E is fixed, then the complement \overline{A} of any set A is the set of all members of that universal set which are not in A.
- For example: If $A = \{2, 4, 6, 8, 10\}$ and $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, then $\overline{A} = \{1, 3, 5, 7, 9\}$
- Notice that: $A \cup \overline{A} = E$ and $A \cap \overline{A} = \emptyset$
- 'Not' means Complement: $\overline{A} = \{x \in E : x \text{ is not a member of } A\}$

Exercise 2.8.1 Find $A \cup B$ and $A \cap B$ for each pair of sets:

- 1. $A = \{m, n\}$, and $B = \{m, n, o, p\}$.
- 2. $A = \{c, o, m, p, u, t, e, r\}$ and $B = \{s, o, f, t, w, a, r, e\}$

3.
$$A = \{1, 2, 3, 4, 6, 8\}$$
 and $B = \{2, 3, 4, 6, 8, 9\}$

4. $A = \{ prime numbers less than 15 \}$ and $B = \{ odd numbers less than 15 \}$

2.9 Venn Diagrams

- A Venn diagram is a diagram used to represent the relationship between sets.
- For example, if the universal set is E = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10:
 - **a.** $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6, 8, \}$

b. $A = \{1, 2, 3, 5, 7\}$ and $B = \{1, 3, 4, 6\}$

c. $A = \{1, 3\}$ and $B = \{1, 2, 3, 4, 5\}$

• Compound sets of $A \cup B$, $A \cap B$ and $\overline{A} \cap B$ can be visualised by shading regions of a Venn diagram.

2.10 The Counting Rule for Sets

- The size of the union $A \cup B$ is not equal to the sum of sizes of A and B.
- This is because the members of the intersection $A \cap B$ would be counted twice.
- Hence $|A \cap B|$ needs to be subtracted as shown below:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Exercise 2.10.1 Suppose $A = \{1, 3, 5, 7\}$ and $B = \{3, 4, 5, 8, 10\}$ with universal set $\{1, 2, ..., 10\}$. List the members of:

$$I. \overline{A}$$
 $2. \overline{B}$
 $3. A \cap B$
 $3. A \cap B$
 $4. \overline{A} \cup \overline{B}$
 $5. \overline{A \cup B}$
 $6. \overline{A} \cap \overline{B}$
 $7. \overline{A \cap B}$

Exercise 2.10.2 Given the following sets: $A = \{a, b, c, d, e, f, \}$, $B = \{b, c, d\}$, $C = \{d, e, f, g, h\}$ and $D = \{g, h, i\}$. Complete the following:

1. n(A) =*2. B* ⊂ 3. $A \cap C =$ 4. $C \cup D =$ _____ 5. List the subsets of B

2.11 Lewis Carroll's Bilateral Diagrams

- A and \bar{A} are represented by horizontal rows of cells.
- B and \overline{B} are related vertical cell arrangement.
- For example:

2.12 Lewis Carroll's Trilateral Diagrams

- A and \bar{A} are represented by horizontal rows of cells.
- B and \overline{B} are related vertical cell arrangement.
- C is related to the inside of the middle square (Inner Cells).
- \bar{C} are represented by cells outside of the middle square (Outer Cells).
- For example:

ABC		ABC	
	ABC	ABC	
	ĀBC	ABC	
AB	5	ABC	

Exercise 2.12.1 Use Lewis Carroll diagrams graph the following:

- **a.** $A \cup \overline{B}$
- **b.** $\bar{A} \cup B$
- c. $A \cap \overline{B}$
- **d.** $\overline{A \cap B}$

Exercise 2.12.2 Use Lewis Carroll diagrams graph the following:

- **a.** $A \cap B \cap C$
- **b.** $A \cap \overline{B} \cap C$
- c. $\bar{A} \cap \bar{B} \cap C$
- **d.** $A \cup (\overline{B \cap C})$

Exercise 2.12.3 Use Venn diagram and Lewis Carroll diagrams to graph the following:

Copyright © 2000 - 2021 Yimin Math Centre (www.yiminmathcentre.com)