Year 11 Math Homework

Student Name: __	
Date:	Score:

Table of Contents

2 Year 11 Topic 2 - The Language of Sets 1
2.1 Describing Sets 1
2.2 Equal Sets 1
2.3 Members and Non-members 1
2.4 The Size of a Set 1
2.5 The Empty Set 2
2.6 Subsets of Sets 2
2.7 Unions and Intersections 3
2.8 The Universal Set and the Complement of a Set 3
2.9 Venn Diagrams 4
2.10 The Counting Rule for Sets 4
2.11 Lewis Carroll's Bilateral Diagrams 6
2.12 Lewis Carroll's Trilateral Diagrams 6

This edition was printed on September 23, 2021 with Worked Solutions.
Camera ready copy was prepared with the $\mathbf{I T}_{\mathbf{E}} \mathbf{X} 2 \mathbf{e}$ typesetting system.
Copyright © 2000-2021 Yimin Math Centre

2 Year 11 Topic 2 - The Language of Sets

2.1 Describing Sets

- A set is a defined collection of objects.
- These objects are known as members.
- Sets can be described by listing the members inside curly brackets:
- $S=\{2,4,6,8,10\}$
- Read as 'S is the set whose members are 2, 4, 6, 8, 10'.
- Alteratively it can be done by writing a description such as:
- $\mathrm{T}=\{$ even integers from 0 to 10$\}$
- Read as ' T is the set of even integers from 0 to 10 '.

2.2 Equal Sets

- If two sets have exactly the same members, they are equal.
- The order in which the members are written doesn't matter, neither does repetition.
- For example: $\{a, b, c, d\}=\{a, d, c, b, a\}=\{b, c, a, d, a, c, b\}$

2.3 Members and Non-members

- The symbol \in means 'is a member of'.
- The symbol \notin means 'is not a member of'.
- For example, if $B=\{a, b, c, d, e\}$, then $a \in B$ and $c \in B$ but $f \notin B$.

2.4 The Size of a Set

- A set may be finite or infinite.
- If a set S is finite, then $|S|$ is the symbol for the number of members in S.
- For example: $|\{a, e, i, o, u\}|=5$
- Keep in mind: $5 \in\{5\}$ and $5 \neq|\{5\}|$ and $|\{5\}|=1$.

2.5 The Empty Set

- The symbol \emptyset represents the empty set.
- The empty set is finite and its number of members is zero.
- ie; $|\emptyset|=0$

Exercise 2.5.1 State whether each set is finite/infinite. If it is finite, state the number of members:

1. $\{2,4,6,8, \ldots\}$
2. $\{0,1,2,3, \ldots 9\}$ \qquad
3. $\{a, b, e, f, g, i, p, a, e\}$
4. $\{$ multiples of 5 that are less than 100$\}$ \qquad
5. $\{n$: nis a positive integer and $1<n<25\}$

2.6 Subsets of Sets

- A set of B is called a subset of a set of C if every member of B is a member of C.
- This notation is written as $B \subset C$.
- The symbol $\not \subset$ means 'not a subset of'.
- For example: $\{$ children in Australia $\} \subset\{$ people in Australia $\}$ but $\{a, b, c\} \not \subset\{a, b, d, e\}$

Exercise 2.6.1 State whether each of the following statements is true or false:

1. If $A=\{0,0\}$, then $|A|=1$. \qquad
2. $|\{0\}|=0$. \qquad
3. $|\{1,1\}|=1$. \qquad
4. If two sets have the same number of members, then they are equal. \qquad
5. If two sets are equal, then they have the same number of members. \qquad
6. If $A \subset B$ and $B \subset A$, then $A=B$. \qquad
7. If $A \subset B$ and $B \subset C$, then $A \subset C$. \qquad
8. $|\{20,21,22,23, \ldots 40\}|=20$.

2.7 Unions and Intersections

- The union $A \cup B$ of two sets A and B is the set of everything belonging to A, B or both.
- The intersection $\mathrm{A} \cap \mathrm{B}$ is the set of everything belonging to both A and B .
- For example, if $A=\{a, b, c, d, e\}$ and $B=\{a, c, f\}$,
then $A \cup B=\{a, b, c, d, e, f\}$ and $A \cap B=\{a, c\}$.
- Two sets A and B are called disjointed if they have no members in common, $\mathrm{ie} ; \mathrm{A} \cap \mathrm{B}=\emptyset$.
- In short, 'Or' means Union, 'And' means Intersection.

2.8 The Universal Set and the Complement of a Set

- A universal set is the set of everything under discussion in a particular situation.
- Once a universal set E is fixed, then the complement \bar{A} of any set A is the set of all members of that universal set which are not in A.
- For example: If $A=\{2,4,6,8,10\}$ and $E=\{1,2,3,4,5,6,7,8,9,10\}$, then $\bar{A}=\{1,3,5,7,9\}$
- Notice that: $A \cup \bar{A}=E$ and $A \cap \bar{A}=\emptyset$
- 'Not' means Complement: $\bar{A}=\{x \in E: x$ is not a member of $A\}$

Exercise 2.8.1 Find $A \cup B$ and $A \cap B$ for each pair of sets:

1. $A=\{m, n\}$, and $B=\{m, n, o, p\}$.
\qquad
\qquad
2. $A=\{c, o, m, p, u, t, e, r\}$ and $B=\{s, o, f, t, w, a, r, e\}$
\qquad
\qquad
3. $A=\{1,2,3,4,6,8\}$ and $B=\{2,3,4,6,8,9\}$
\qquad
\qquad
4. $A=\{$ prime numbers less than 15$\}$ and $B=\{$ odd numbers less than 15$\}$

2.9 Venn Diagrams

- A Venn diagram is a diagram used to represent the relationship between sets.
- For example, if the universal set is $\mathrm{E}=1,2,3,4,5,6,7,8,9,10$:
a. $A=\{1,3,5,7\}$ and $B=\{2,4,6,8$,

b. $A=\{1,2,3,5,7\}$ and $B=\{1,3,4,6\}$

c. $A=\{1,3\}$ and $B=\{1,2,3,4,5\}$

- Compound sets of $A \cup B, A \cap B$ and $\bar{A} \cap B$ can be visualised by shading regions of a Venn diagram.

2.10 The Counting Rule for Sets

- The size of the union $A \cup B$ is not equal to the sum of sizes of A and B .
- This is because the members of the intersection $A \cap B$ would be counted twice.
- Hence $|A \cap B|$ needs to be subtracted as shown below:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Exercise 2.10.1 Suppose $A=\{1,3,5,7\}$ and $B=\{3,4,5,8,10\}$ with universal set $\{\mathbf{1 , 2 , \ldots 1 0}$. List the members of:

1. \bar{A} \qquad
2. \bar{B} \qquad
3. $A \cap B$ \qquad
4. $\bar{A} \cup \bar{B}$ \qquad
5. $\overline{A \cup B}$ \qquad
6. $\bar{A} \cap \bar{B}$ \qquad
7. $\overline{A \cap B}$ \qquad

Exercise 2.10.2 Given the following sets: $A=\{a, b, c, d, e, f\},, B=\{b, c, d\}, C=\{d, e, f, g, h\}$ and $D=\{g, h, i\}$. Complete the following:

1. $n(A)=$ \qquad
2. $B \subset$ \qquad
3. $A \cap C=$ \qquad
4. $C \cup D=$ \qquad
5. List the subsets of B \qquad

2.11 Lewis Carroll's Bilateral Diagrams

- A and \bar{A} are represented by horizontal rows of cells.
- B and \bar{B} are related vertical cell arrangement.
- For example:

2.12 Lewis Carroll's Trilateral Diagrams

- A and \bar{A} are represented by horizontal rows of cells.
- B and \bar{B} are related vertical cell arrangement.
- C is related to the inside of the middle square (Inner Cells).
- \bar{C} are represented by cells outside of the middle square (Outer Cells).
- For example:

$A B \bar{C}$	$A \overline{B C}$
	$A B C$
	$A \bar{B} C$
$\bar{A} B C$	$\overline{A B C}$
$\bar{A} B \bar{C}$	

Exercise 2.12.1 Use Lewis Carroll diagrams graph the following:
a. $A \cup \bar{B}$
b. $\bar{A} \cup B$
c. $A \cap \bar{B}$
d. $\overline{A \cap B}$

a

b

c

d

Exercise 2.12.2 Use Lewis Carroll diagrams graph the following:

a. $A \cap B \cap C$
b. $A \cap \bar{B} \cap C$
c. $\bar{A} \cap \bar{B} \cap C$
d. $A \cup(\overline{B \cap C})$

a

b

c

d

Exercise 2.12.3 Use Venn diagram and Lewis Carroll diagrams to graph the following:

1. $A \cup \bar{B}$

2. $A \cap \bar{B}$

3. $A \cap(\overline{B \cup C})$

