Year 11 Math Homework

Student Name:	Grade:
Date:	Score:

Table of Contents

3	Year	r 11 Top	oic 3 — Basic Algebra Part 2	1
	3.1	Basic A	Algebra	1
		3.1.1	Methods of Factorisation	1
		3.1.2	Simplification of Fractions	4
		3.1.3	Addition and Subtraction of Fractions	5
	3.2	Equati	ons and Inequations	6
		3.2.1	Linear Equations with One Variable	6
		3.2.2	Inequations	7
		3.2.3	Square Roots and Absolute Values	8
		3.2.4	Quadratic Equations	0
	3.3	Miscel	llaneous Exercises	12

This edition was printed on September 23, 2021 with **Worked Solutions.** Camera ready copy was prepared with the **LFT_EX2e** typesetting system. Copyright © 2000 - 2021 Yimin Math Centre

3 Year 11 Topic 3 — Basic Algebra Part 2

3.1 Basic Algebra

3.1.1 Methods of Factorisation

- Identifying a common factor
- Grouping in pairs
- Difference of two squares: $a^2 b^2 = (a b)(a + b)$
- Sum and difference of two cubes: $\begin{cases} a^3 + b^3 = (a+b)(a^2 ab + b^2) \\ a^3 b^3 = (a-b)(a^2 + ab + b^2) \end{cases}$
- Quadratic trinomial: $x^2 + (m+n)x + mn = (x+m)(x+n)$

Exercise 3.1.1 Factorise the following:

1.
$$64 - p^2$$

2.
$$\frac{a^2}{36} - 1$$

3.
$$(1+q)^2-1$$

4.
$$(x+3)^2 - (x-3)^2$$

$$5. \ x^3 - 3x^2 - 9x + 27$$

Exercise 3.1.2 Factorise the following:

1.
$$(3a-b)^3 + 8b^3$$

3.
$$(2x-y)^3 + (x-2y)^3$$

4.
$$\frac{27p^3}{125} - q^3$$

5.
$$16a^3b^3 + 54c^3$$

6.
$$8x^5 - 72x^3 + x^2 - 9$$

Exercise 3.1.3 Factorise the following quadratic trinomials:

$$1. \ x^2 + 12x + 35$$

2.
$$x^2 - 8x + 15$$

3.
$$2x^2 + 7x + 3$$

4.
$$6x^2 - 19x + 14$$

$$5. \ 9x^2 + 30x + 25$$

6.
$$4x^2 - 4x - 15$$

7.
$$(a+3b)(a-3b) - 3c(a+3b)$$

3.1.2 Simplification of Fractions

Exercise 3.1.4 Simplify the following:

1.
$$\frac{x^2+3x}{x^2-9}$$

3.	$\frac{a^2b}{3ab-b^2}$	×	$\frac{3a^2-ab}{ab}$
	000		ao

$$4. \ \frac{8a^3 - 1}{8a^2 + 4a + 2}$$

$$5. \ \frac{x^3 - (x - y)^3}{x^2 - (x - y)^2}$$

3.1.3 Addition and Subtraction of Fractions

Exercise 3.1.5 Simplify the following:

1.
$$\frac{2a-b}{3} - \frac{a+b}{6}$$

2.
$$\frac{2}{5x} + \frac{3}{7x}$$

3.
$$\frac{4a}{5} - \frac{a}{6} + \frac{2a}{3}$$

$$4. \ \frac{a}{a-b} + \frac{b}{a+b}$$

5.
$$\frac{3}{x-2} - \frac{2}{x^2-4}$$

6.
$$\frac{1}{x+y} - \frac{1}{x-y}$$

3.2 Equations and Inequations

3.2.1 Linear Equations with One Variable

Exercise 3.2.1 Solve the following equations with respect to x:

1.
$$3(x+3) = 4(9-3x)$$

2.
$$8(x+2) - 2(x-2) = 3(x+5)$$

3.
$$18 - 2(x+2) = 3(x-2)$$

Exercise 3.2.2 Solve the following equations with respect to x:

$$1. \ \frac{5}{2x-1} = \frac{3}{x+2}$$

$$2. \ \frac{x+4}{2} - \frac{3-4x}{4} = \frac{5-x}{8}$$

$$3. \ \frac{3}{x-2} - \frac{2}{x+2} = \frac{1}{x^2-4}$$

3.2.2 Inequations

If both sides of an inequation are multiplied or divided by a negative number, the direction of the inequality sign is reversed.

Exercise 3.2.3 Solve the following inequations:

1.
$$7x < 2(3x - 5)$$

2.
$$3x - 2 \ge x + 3$$

3.
$$\frac{2x-1}{3} > -1$$

4.
$$\frac{4x}{3} + 3 \ge \frac{7x}{3}$$

5.
$$\frac{x-5}{3} > \frac{5x-3}{2}$$

6.
$$-2 \le \frac{3x-1}{2} < 2$$

3.2.3 Square Roots and Absolute Values

•
$$\sqrt{x^2} = x \text{ if } x > 0$$

•
$$\sqrt{x^2} = -x$$
 if $x < 0$

•
$$\sqrt{x^2} = 0$$
 if $x = 0$

•
$$|x| = x \text{ if } x > 0$$

•
$$|x| = -x \text{ if } x < 0$$

•
$$|x| = 0$$
 if $x = 0$

•
$$\sqrt{x^2} = |x|$$

•
$$|xy| = |x| \times |y|$$

•
$$|x+y| \le |x| + |y|$$

•
$$|x + y| = |x| + |y| *$$

* When and only when x and y are either both zero or both have the same sign.

Exercise 3.2.4 Solve for x:

1.
$$|2x - 1| = 3$$

2.
$$|5x - 3| = 2$$

3.
$$|2 - 4x| = 1$$

4.
$$|3x - 2| \ge 1$$

5.
$$|2x - 1| < 3$$

Exercise 3.2.5 Give meaning to:

1. $\sqrt{(x-3)^2}$

2. $\sqrt{(3x-y)^2}$

Exercise 3.2.6 Simplify the following:

1. $\frac{|x-3|}{x^2-9}$

2. $\frac{\sqrt{(x-1)^2}}{x-1}$

3. $\frac{|x^2-1|}{x+1}$

4. $\sqrt{x^2 - 6x + 9}$

3.2.4 Quadratic Equations

$$ax^2 + bx + c = 0, \ a \neq 0$$

Exercise 3.2.7 Solve the following quadratic equations:

1.
$$25x^2 = 9$$

$$2. \ 2x^2 - 8 = 0$$

3.
$$5x^2 + x = 0$$

4.
$$2x^2 - 5x = 0$$

$$5. \ 5x^2 = 3x + 2$$

6.
$$x^2 = 4(x-1)$$

Exercise 3.2.8 Solve the following quadratic equations by completing the square:

 $1. \ x^2 - 10x - 11 = 0$

2. $x^2 = 4x$

3. $x^2 + 2x - 3 = 0$

Exercise 3.2.9 Solve the following quadratic equations by using the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $1. \ 2x^2 - 3x + 1 = 0$

2. $x^2 + 2x - 4$

 $3. \ 3x^2 + 9x + 5 = 0$

3.3 Miscellaneous Exercises

Exercise 3.3.1

1. Solve $20 \le 5x - 5 \le 30$.

2. Write expressions for the following:

(a)
$$\sqrt{x^2 - 10x + 25}$$
 when $x > 5$

(b) $\sqrt{(2x+1)^2}$

3. Solve for x:

(a)
$$|2x-2|=2$$

(b) |5x+1|=4

Exercise 3.3.2 Solve the following quadratic equations:

 $1. \ x^2 - 2x - 4 = 0$

 $3x^2 - 8x + 3 = 0$

3. 5x(x+2) = 3x - 2

4. In a right-angled triangle, one of the sides adjacent to the right angle is 4 cm longer than the other side. Find the length of all three sides if the area of the triangle is 96 cm^2 .

5. A rectangular swimming pool 12 m by 8 m is surrounded by a concrete path of uniform width. If the area of the path is 224 m^2 , find its width.