Year 11 Math Homework

Student Name:	Grade:
Date:	Score:

Table of Contents

4	Year	r 11 Top	ic 4 — Numbers and Functions (Part 1)	1
	4.1	Numbe	ers and Functions (Revision)	1
		4.1.1	Surds and their Arithmetic	1
		4.1.2	Equality of Surdic Expressions	3
		4.1.3	Relations and Functions	4
		4.1.4	Inverse Relations and Functions	6

This edition was printed on March 15, 2022 with **Worked Solutions**. Camera ready copy was prepared with the **LTEX2e** typesetting system. Copyright © 2000 - 2022 Yimin Math Centre

4 Year 11 Topic 4 — Numbers and Functions (Part 1)

4.1 Numbers and Functions (Revision)

4.1.1 Surds and their Arithmetic

Exercise 4.1.1

1. Use the result $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ to simplify these fractions:

- 2. Simplify each of these expressions completely:
 - (a) $\sqrt{96} \sqrt{24} \sqrt{54}$ (b) $\sqrt{45} + \sqrt{80} - \sqrt{125}$ (c) $\sqrt{63} + \sqrt{72} - \sqrt{50}$ (d) $\sqrt{20} - \sqrt{12} + \sqrt{108}$
- 3. Expand the following expressions and simplify them:
 - (a) $(\sqrt{3}-1)(\sqrt{2}-1)$ (b) $(\sqrt{a}-1)(\sqrt{a}+1)$ (c) $(2\sqrt{5}+\sqrt{3})(2-\sqrt{3})$ (d) $(\sqrt{x+1}+\sqrt{x-2})^2$

Exercise 4.1.2 Rationalising the denominator

- 1. Fully simplify these fractions:
- (a) $\frac{6\sqrt{3}\times5\sqrt{2}}{\sqrt{12}\times\sqrt{18}}$ (b) $\frac{5\sqrt{44}\times\sqrt{14}}{\sqrt{24}\times3\sqrt{33}}$ 2. Simplify the following by rationalising the denominator of each fraction: (a) $\frac{1}{3+\sqrt{6}} - \frac{2}{\sqrt{6}}$ (b) $\frac{1}{3\sqrt{2}+1} + \frac{1}{1-3\sqrt{2}}$
- 3. Determine, without using a calculator, which is the greater number in each pair:

(a)
$$15 - 7\sqrt{2}$$
 or $3 + 2\sqrt{2}$

(b) $2\sqrt{6} - 3$ or $7 - 2\sqrt{6}$

4.1.2 Equality of Surdic Expressions

Exercise 4.1.3

1. Find the value of integers x, y and z, given that z has no squares as factors:

(a) $x + y\sqrt{3} = (6 + \sqrt{3})^2$ (b) $x + y\sqrt{z} = (3 + \sqrt{5})^2$ 2. Find the rational numbers a and b such that: (a) $a + b\sqrt{3} = \frac{1}{2-\sqrt{3}}$ (b) $a + b\sqrt{6} = \frac{2\sqrt{6}+1}{2\sqrt{6}-3}$ 3. Find the rational value of a and b, with a > 0 by forming two simultaneous equations and solving *them*: $(a + b\sqrt{2})^2 = 3 + 2\sqrt{2}$

4.1.3 Relations and Functions

- A function is a set of ordered pairs in which no two ordered pairs have the same x-coordinate.
- The domain of a function is the set of all x-coordinates of the ordered pairs.
- The range of a function is the set of all y-coordinates.

Exercise 4.1.4

- 1. Given that $f(x) = x^3 x + 1$, evaluate and simplify the following:
 - (a) $\frac{f(h)-f(0)}{h}$
 - (b) $\frac{1}{6} \left(f(0) + 4f(\frac{1}{2}) + f(1) \right)$

2. Find the natural domains of the following:

(a)
$$f(x) = \sqrt{9 - x^2}$$

(b) $f(x) = \frac{1}{x^2 - 5x + 6}$

(c)
$$g(x) = \frac{x-3}{x^2-9}$$

3. If $f(x) = \frac{1}{1-x}$, find f(a-b).

1. If $f(x) = 3^x$, show that $f(-x) = \frac{1}{f(x)}$

2. If $h(x) = \frac{x}{x^2-1}$, show that $h(\frac{1}{x}) = -h(x)$ for $x \neq 0$

3. If $f(x) = x + \frac{1}{x}$, show that $f(x) \times f(x + \frac{1}{x}) = f(x^2) + 3$

- 4. Given the functions $f(x) = x^2$, F(x) = x 3, $g(x) = 2^x$ and G(x) = 3x, find:
 - (a) F(f(x))

(b) G(g(x))

4.1.4 Inverse Relations and Functions

- The inverse relation is obtained by reversing the values of each ordered pair.
- The domain of the inverse is the range of the relation and the range of the inverse is the domain of the relation.
- The graph of the inverse relation is obtained by reflecting the original graph in the line y = x.
- To find the equations and conditions of the inverse relation, write x for y, y for x and then solve for y.
- The inverse relation of a given relation is a function if and only if no horizontal line crosses the original graph more than once.

Exercise 4.1.6 Find the inverse algebraically by swapping x and y and then making y the subject:

- 1. Each pair of functions f(x) and g(x) are mutually inverse. Verify in each case by substitution that: (i) f(g(2)) = 2 and (ii) g(f(2)) = 2:
 - (a) f(x) = x + 13 and g(x) = x 13

(b) $f(x) = x^3 - 6$ and $g(x) = \sqrt[3]{x+6}$

2. Show that the inverse function of $y = \frac{ax+b}{x+c}$ is $y = \frac{b-cx}{x-a}$, for $x \le 0$.

3. Hence show that $y = \frac{ax+b}{x+c}$ is its own inverse if and only if a + c = 0.

Exercise 4.1.8 Express $1 - \frac{2}{1-x}$ as a single fraction and hence find its reciprocal.

1. If $f(x) = \frac{1}{1-x}$, find f(f(x)).

2. Find the range of the function $f(x) = \frac{1}{x^2+4x+7}$.

3. Solve $\frac{x}{1-x} > \frac{1}{3}$.

4. Solve $\frac{1}{1-x^2} \le 4$.

5. Solve |1+3x| = x-2.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)