Year 11 Math Homework

Student Name: __	Grade:
Date:	Score:

Table of Contents

4 Year 11 Topic 4 - Numbers and Functions (Part 1) 1
4.1 Numbers and Functions (Revision) 1
4.1.1 Surds and their Arithmetic 1
4.1.2 Equality of Surdic Expressions 3
4.1.3 Relations and Functions 4
4.1.4 Inverse Relations and Functions 6

This edition was printed on March 15, 2022 with Worked Solutions.
Camera ready copy was prepared with the $\mathbf{I T}_{\mathbf{E}} \mathbf{X} 2 \mathrm{e}$ typesetting system.
Copyright © 2000-2022 Yimin Math Centre

4 Year 11 Topic 4 - Numbers and Functions (Part 1)

4.1 Numbers and Functions (Revision)

4.1.1 Surds and their Arithmetic

Exercise 4.1.1

1. Use the result $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$ to simplify these fractions:
(a) $\frac{\sqrt{72}}{\sqrt{98}}$ \qquad
(b) $\frac{\sqrt{50}}{\sqrt{8}}$
(c) $\frac{\sqrt{52}}{\sqrt{91}}$
(d) $\frac{\sqrt{175}}{\sqrt{28}}$
2. Simplify each of these expressions completely:
(a) $\sqrt{96}-\sqrt{24}-\sqrt{54}$
(b) $\sqrt{45}+\sqrt{80}-\sqrt{125}$ \qquad
(c) $\sqrt{63}+\sqrt{72}-\sqrt{50}$
(d) $\sqrt{20}-\sqrt{12}+\sqrt{108}$ \qquad
3. Expand the following expressions and simplify them:
(a) $(\sqrt{3}-1)(\sqrt{2}-1)$
(b) $(\sqrt{a}-1)(\sqrt{a}+1)$
(c) $(2 \sqrt{5}+\sqrt{3})(2-\sqrt{3})$
(d) $(\sqrt{x+1}+\sqrt{x-2})^{2}$
\qquad
\qquad
\qquad
\qquad

Exercise 4.1.2 Rationalising the denominator

1. Fully simplify these fractions:
(a) $\frac{6 \sqrt{3} \times 5 \sqrt{2}}{\sqrt{12} \times \sqrt{18}}$
\qquad
\qquad
\qquad
(b) $\frac{5 \sqrt{44} \times \sqrt{14}}{\sqrt{24} \times 3 \sqrt{33}}$
\qquad
\qquad
\qquad
2. Simplify the following by rationalising the denominator of each fraction:
(a) $\frac{1}{3+\sqrt{6}}-\frac{2}{\sqrt{6}}$
\qquad
\qquad
\qquad
(b) $\frac{1}{3 \sqrt{2}+1}+\frac{1}{1-3 \sqrt{2}}$
\qquad
\qquad
\qquad
3. Determine, without using a calculator, which is the greater number in each pair:
(a) $15-7 \sqrt{2}$ or $3+2 \sqrt{2}$
\qquad
\qquad
\qquad
(b) $2 \sqrt{6}-3$ or $7-2 \sqrt{6}$
\qquad
\qquad
\qquad
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

4.1.2 Equality of Surdic Expressions

Exercise 4.1.3

1. Find the value of integers x, y and z, given that z has no squares as factors:
(a) $x+y \sqrt{3}=(6+\sqrt{3})^{2}$
\qquad
\qquad
\qquad
(b) $x+y \sqrt{z}=(3+\sqrt{5})^{2}$
\qquad
\qquad
\qquad
2. Find the rational numbers a and b such that:
(a) $a+b \sqrt{3}=\frac{1}{2-\sqrt{3}}$
\qquad
\qquad
\qquad
(b) $a+b \sqrt{6}=\frac{2 \sqrt{6}+1}{2 \sqrt{6}-3}$
\qquad
\qquad
\qquad
3. Find the rational value of a and b, with $a>0$ by forming two simultaneous equations and solving them: $(a+b \sqrt{2})^{2}=3+2 \sqrt{2}$
\qquad
\qquad
\qquad
\qquad
\qquad

4.1.3 Relations and Functions

- A function is a set of ordered pairs in which no two ordered pairs have the same x-coordinate.
- The domain of a function is the set of all x -coordinates of the ordered pairs.
- The range of a function is the set of all y-coordinates.

Exercise 4.1.4

1. Given that $f(x)=x^{3}-x+1$, evaluate and simplify the following:
(a) $\frac{f(h)-f(0)}{h}$
\qquad
\qquad
(b) $\frac{1}{6}\left(f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right)$
\qquad
\qquad
\qquad
2. Find the natural domains of the following:
(a) $f(x)=\sqrt{9-x^{2}}$
\qquad
\qquad
(b) $f(x)=\frac{1}{x^{2}-5 x+6}$
\qquad
\qquad
(c) $g(x)=\frac{x-3}{x^{2}-9}$
3. If $f(x)=\frac{1}{1-x}$, find $f(a-b)$.
\qquad
\qquad
\qquad

Exercise 4.1.5

1. If $f(x)=3^{x}$, show that $f(-x)=\frac{1}{f(x)}$
\qquad
\qquad
\qquad
2. If $h(x)=\frac{x}{x^{2}-1}$, show that $h\left(\frac{1}{x}\right)=-h(x)$ for $x \neq 0$
\qquad
\qquad
\qquad
\qquad
\qquad
3. If $f(x)=x+\frac{1}{x}$, show that $f(x) \times f\left(x+\frac{1}{x}\right)=f\left(x^{2}\right)+3$
\qquad
\qquad
\qquad
\qquad
\qquad
4. Given the functions $f(x)=x^{2}, F(x)=x-3, g(x)=2^{x}$ and $G(x)=3 x$, find:
(a) $F(f(x))$
\qquad
\qquad
\qquad
(b) $G(g(x))$
\qquad
\qquad
\qquad

4.1.4 Inverse Relations and Functions

- The inverse relation is obtained by reversing the values of each ordered pair.
- The domain of the inverse is the range of the relation and the range of the inverse is the domain of the relation.
- The graph of the inverse relation is obtained by reflecting the original graph in the line $y=x$.
- To find the equations and conditions of the inverse relation, write x for y, y for x and then solve for y.
- The inverse relation of a given relation is a function if and only if no horizontal line crosses the original graph more than once.

Exercise 4.1.6 Find the inverse algebraically by swapping x and y and then making y the subject:

1. $y=\frac{1}{x-1}$
\qquad
\qquad
\qquad
2. $y=\frac{x+3}{x-3}$
\qquad
\qquad
\qquad
3. $y=\frac{2 x}{x+3}$
\qquad
\qquad
\qquad
4. $y=\frac{2 x-2}{x-2}$
\qquad
\qquad
\qquad

Exercise 4.1.7

1. Each pair of functions $f(x)$ and $g(x)$ are mutually inverse. Verify in each case by substitution that:
(i) $f(g(2))=2$ and (ii) $g(f(2))=2$:
(a) $f(x)=x+13$ and $g(x)=x-13$
\qquad
\qquad
\qquad
(b) $f(x)=x^{3}-6$ and $g(x)=\sqrt[3]{x+6}$
\qquad
\qquad
\qquad
2. Show that the inverse function of $y=\frac{a x+b}{x+c}$ is $y=\frac{b-c x}{x-a}$, for $x \leq 0$.
\qquad
\qquad
\qquad
3. Hence show that $y=\frac{a x+b}{x+c}$ is its own inverse if and only if $a+c=0$.

Exercise 4.1.8 Express $1-\frac{2}{1-x}$ as a single fraction and hence find its reciprocal.

\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 4.1.9

1. If $f(x)=\frac{1}{1-x}$, find $f(f(x))$.
\qquad
\qquad
\qquad
\qquad
2. Find the range of the function $f(x)=\frac{1}{x^{2}+4 x+7}$.
\qquad
\qquad
\qquad
\qquad
\qquad
3. Solve $\frac{x}{1-x}>\frac{1}{3}$.
\qquad
\qquad
\qquad
\qquad
4. Solve $\frac{1}{1-x^{2}} \leq 4$.
\qquad
\qquad
\qquad
\qquad
\qquad
5. Solve $|1+3 x|=x-2$.
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 4.1.10

1. Show that $\frac{x^{2}+1}{x^{2}+4}=1-\frac{3}{x^{2}+4}$
\qquad
\qquad
\qquad
2. Simplify $\frac{3^{n}+3^{n-2}}{3^{n-1}}$.
\qquad
\qquad
\qquad
3. The equation $\frac{1}{1+x^{2}}=k$ has two distinct real roots. Find the possible values of k.
\qquad
\qquad
\qquad
\qquad
\qquad
4. Prove that $\frac{1}{5-\sqrt{3}}+\frac{1}{5+\sqrt{3}}$ is rational.
\qquad
\qquad
\qquad
\qquad
\qquad
5. Solve $x+|x|=4$
\qquad
\qquad
\qquad
\qquad
\qquad
