| Student Name: | Grade: |
|---------------|--------|
| Date:         | Score: |

# **Table of Contents**

| 1 | Year | 7 Term | n 1 Week 1 Homework Answers | 1 |
|---|------|--------|-----------------------------|---|
|   | 1.1  | Beginn | ings in Number              | 1 |
|   |      | 1.1.1  | Egyptian numerals:          | 1 |
|   |      | 1.1.2  | Roman numerals              | 2 |
|   |      | 1.1.3  | Hindu-Arabic numerals       | 3 |
|   |      | 1.1.4  | Place Value                 | 4 |
|   |      | 1.1.5  | Powers of Numbers           | 4 |
|   |      | 1.1.6  | Expanded Notation           | 5 |
|   |      | 1.1.7  | Exponential Notation        | 5 |
|   |      | 1.1.8  | The Four Operations         | 6 |
|   | 1.2  | Proble | m Solving                   | 7 |
|   | 1.3  | Diagno | ostic Test                  | 8 |

This edition was printed on September 16, 2021. Camera ready copy was prepared with the LAT<sub>E</sub>X2e typesetting system. Copyright © 2000 - 2021 Yimin Math Centre

# 1 Year 7 Term 1 Week 1 Homework Answers

## 1.1 Beginnings in Number

## **1.1.1 Egyptian numerals:**

| Number     | Symbol | Meaning                             |
|------------|--------|-------------------------------------|
| 1          | I      | a vertical staff                    |
| 10         | $\cap$ | a heel bone                         |
| 100        | 9      | a coiled rope                       |
| 1000       | ŝ      | a lotus flower                      |
| 10 000     | {      | a bent reed or<br>pointing finger   |
| 100 000    | Ω      | a burbot fish or<br>tadpole         |
| 1 000 000  | Ŕ      | an amazed man or<br>God of infinity |
| 10 000 000 | Q      | a religious symbol                  |

- About 3000 years before the birth of Jesus Christ, the Egyptians had developed a tally system based on ten. Ten of one symbol can be replaced by one of another.
- The order of symbols does not affect the value of the numeral.
- The value of a numeral can be found by adding the values of the symbols used.

## Example 1.1.1



## 1.1.2 Roman numerals

Roman numerals were very popular about 2000 years ago. The Roman number system is based on the idea of **addition** and **subtraction**.

| Number | Symbol | Meaning                         | LX means 50 and 10.     XI means 50 less 10.    |
|--------|--------|---------------------------------|-------------------------------------------------|
| 1      | I      | one finger                      | • Larger numerals ( of arrows!                  |
| 5      | V      | one hand                        | are formed by placing a stroke                  |
| 10     | Х      | two Vs:                         | $\overline{V} = 5000$<br>$\overline{X} = 10000$ |
| 50     | L      | half a C                        | $\overline{L} = 50000$                          |
| 100    | С      | <i>centum</i> = hundred         | $\overline{D} = 500000$                         |
| 500    | D      | half an $\bigcirc$ : $\bigcirc$ | $\overline{M} = 1000000$                        |
| 1000   | М      | $\cap$                          |                                                 |
|        |        |                                 |                                                 |

• When a smaller numeral appears before a large one, it is **subtracted** from the large one:

IV means 
$$5 - 1 = 4$$
  
XL means  $50 - 10 = 40$ 

• When a smaller numeral appears after the larger one, it is **added** to the large one.

VI means 5 + 1 = 6LX means 50 + 10 = 60

• By repeating a numeral, its value is repeated.

$$XX = 10 + 10 = 20$$
  
 $XXX = 10 + 10 + 10 = 30$ 

• By placing a bar over the numeral, its value is increased by 1000 times (M = 1000).

 $\begin{array}{ll} \overline{V} &= 5000 & \overline{X} &= 10,000 \\ \overline{L} &= 50,000 & \overline{C} &= 100,000 \\ \overline{D} &= 500,000 & \overline{M} &= 1,000,000 \end{array}$ 

### Example 1.1.2

#### Solution:

- Change the Roman numerals into our own numerals:
   (a) XXXIV = 10 + 10 + 10 + 4 = 34
   (b) CXXVII = 100 + 10 + 10 + 7 = 127
- 2. Change these Hindu-Arabic numerals into Roman numerals:
  (a) 1256 = MCCLVI
  (b) 214 = CCXIV
  (c) 2008 = MMVIII

| Ι    | II  | III | IV  | V   | VI  | VII | VIII | IX  |
|------|-----|-----|-----|-----|-----|-----|------|-----|
| 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8    | 9   |
| X    | XX  | XXX | XL  | L   | LX  | LXX | LXXX | XC  |
| 10   | 20  | 30  | 40  | 50  | 60  | 70  | 80   | 90  |
| C    | CC  | CCC | CD  | D   | DC  | DCC | DCCC | CM  |
| 100  | 200 | 300 | 400 | 500 | 600 | 700 | 800  | 900 |
| М    |     |     |     |     |     |     |      |     |
| 1000 |     |     |     |     |     |     |      |     |

The table below gives more details of the Roman numeral system:

#### 1.1.3 Hindu-Arabic numerals

- These numerals, which we used today were invented by Hindus in India around 300 BC and were carried to Europe by Arabs who had invaded Spain in the eighth century.
- The position of a symbol is very important.
- The system has place value, based on ten.
- The invention of s symbol for zero was a significant step, as an empty space for zero could be misunderstood.

## Exercise 1.1.1 Change these Roman numerals into our own numerals:

| 1. CMXLVII | 947 | 6. DCCCVII <u>807</u>   |  |
|------------|-----|-------------------------|--|
| 2. CCCXVI_ | 316 | 7. CDXCVI <u>496</u>    |  |
| 3. LXXXIV_ | 84  | 8. VDCCXXI <u>5,721</u> |  |
| 4. CDXCIX_ | 499 | 9. DCCXCIII             |  |
| 5. DLXVI   | 566 | 10. MMXXVII             |  |

### **Exercise 1.1.2 Change the Hindu-Arabic numerals to Roman numerals:**

| 1. 212 <b>CCXII</b>   | 5. 1,452 <u>MCDLII</u>  |
|-----------------------|-------------------------|
| 2. 649 <b>DCXLIX</b>  | 6. 2008 <u>MMVIII</u>   |
| 3. 444 <u>CDXLIV</u>  | 7. 542,637 <u> </u>     |
| 4. 369 <u>CCCLXIX</u> | 8. 4,304 <u>MVCCCIV</u> |

## 1.1.4 Place Value

Our number system today is based on the Hindu-Arabic system where the value of a number is determined by its place in a particular column as shown in the example below.





- The place value of 2 is 200 000 or two hundred thousand.
- The place value of 6 is 600 or six hundred.

## Exercise 1.1.3 State the place value of 5 the following numerals:

 1. 123450
 5 tens

 2. 520002
 5 hundred thousands

 3. 125038
 5 thousands

 4. 946532
 5 hundreds

## 1.1.5 Powers of Numbers

Example 1.1.4

## Solution:

- $6 \times 6 \times 6 = 6^3 = 216$
- $10 \times 10 \times 10 \times 10 \times 10 = 10^5 = 100000$
- $6 \times 10^3 = 6 \times 1000 = 6000$

## **1.1.6 Expanded Notation**

## Example 1.1.5

| Solution: |    |                                                                                    |
|-----------|----|------------------------------------------------------------------------------------|
|           |    | 502,390 = 500,000 + 2,000 + 300 + 90                                               |
|           | or | $502,390 = (5 \times 100,000) + (2 \times 1,000) + (3 \times 100) + (9 \times 10)$ |

**Exercise 1.1.4 Write each of the following numbers in expanded notation:** 



#### Example 1.1.6

Solution:  $3,102,364 = 3 \times 10^{6} + 1 \times 10^{5} + 2 \times 10^{3} + 3 \times 10^{2} + 6 \times 10^{1} + 4 \times 10^{0}$ 

### Exercise 1.1.5 Write each of the following numbers in exponential notation:



Copyright © 2000 - 2021 Yimin Math Centre (www.yiminmathcentre.com)

## **1.1.8 The Four Operations**

## **Exercise 1.1.6 Additions**

| 1.   | 1239 + 8761 =              | 10,000  |
|------|----------------------------|---------|
| 2.   | 515 + 307 + 93 + 982 =     | 1,897   |
| 3.   | 19028 + 2908 + 1047 = -    | 22,983  |
| 4.   | 198235 + 29047 + 30009 =   | =       |
| Exer | cise 1.1.7 Subtractions    |         |
| 1.   | 56213 - 17296 =            | 38,917  |
| 2.   | 10002 - 8909 =             | 1,093   |
| 3.   | 491625 - 38043 =           | 453,582 |
| 4.   | 30074 - 13876 =            | 16,198  |
| Exer | cise 1.1.8 Multiplications |         |
| 1.   | $2048 \times 23 =$         | 47,104  |
| 2.   | $1308 \times 70 =$         | 91,560  |
| 3.   | $1003 \times 303 =$        | 303,909 |
| 4.   | $645 \times 508 =$         | 327,660 |
| Exer | cise 1.1.9 Divisions       |         |
| 1.   | $8950 \div 20 =$           | 447.5   |
| 2.   | $9630 \div 90 =$           | 107     |
| 3.   | $4212 \div 18 =$           | 234     |
| 4.   | $14950 \div 46 = $         | 325     |

Copyright © 2000 - 2021 Yimin Math Centre (www.yiminmathcentre.com)

## **1.2 Problem Solving**

## Exercise 1.2.1

1. Anna, Mark and Ken have a total savings of \$1980. Anna's savings is twice that of Mark's and Ken's Savings is thrice that of Anna's. How much more saving has Ken than Anna?

Solution:  $\begin{cases}
A + M + K = 1980 \\
A = 2M \\
K = 3A
\end{cases}$   $2M + M + 6M = 1980 \ 9M = 1980 \\
K = 3A
\end{cases}$   $M = \$220 \ A = 2 \times 220 = \$440, \ K = 3 \times 440 = \$1320 \ K - A = 1320 - 440 = \$880.$ 

2. 200 trees were planted at equal distance apart along the sides of a straight expressway. The distance between the first and the last tree is 396 m. What is the distance between the first and the fifteenth tree?

| Solution: | 100 trees on each side interval $= 396 \div 99 = 4 m$             |
|-----------|-------------------------------------------------------------------|
|           | The ditance between the first and fifteenth $4 \times 14 = 56  m$ |

3. During a sale, Shop A and Shop B were selling similar T-shirts at \$14 and \$12 respectively. Before the sale, the price of T-shirts was the same in both shops. A sum of \$160 could be saved by buying 8 T-shirts from each shop during the sale. How much was the price of a T-shirt from each shop before the discount?

**Solution:** Let the price before the sale be  $P \Rightarrow 16 \times P - (8 \times 14 + 8 \times 12) = 160$  $16P - 208 = 160 \Rightarrow 16P = 368 \Rightarrow P = 368 \div 16 = $23.$ 

4. For every question Jane answered correctly in a quiz, she scored 8 points. 2 points were deducted for each incorrect answer. For every 10 questions Jane answered, 2 were incorrect. She scored a total 360 points in the quiz.

(a) How many questions did Jane answer altogether?

Solution: For every 10 question, 2 incorrect,  $\Rightarrow 8 \times 8 - 2 \times 2 = 60$  $360 \div 60 = 6 \text{ sets}, \Rightarrow 6 \times 10 = 60 \text{ questions in total.}$ 

(b) How many point less did she score because of the incorrect answers?

Solution:  $12 \text{ incorrect questions, } 12 \times 10 = 120 \text{ points.}$ 

[4]

## 1.3 Diagnostic Test

1. Write the Roman numeral for each of the following:



3. Write the numeral 2,450,039 in words.

**Solution:** Two million four hundred and fifty thousand and thirty nine.

[4]

| 4. | Write the smallest 4 digit number with 8 in tens place in which no numeral is repeated.                   | [4] |
|----|-----------------------------------------------------------------------------------------------------------|-----|
|    | 4 <b>1,082</b>                                                                                            |     |
| 5. | Write the largest 4 digit number with 3 in hundreds place in which no numeral is repeated.                | [4] |
|    | 5 <b>9,387</b>                                                                                            |     |
| 6. | How many times greater is the value of the first 5 than the value of the second 5 in the numeral 3500350? | [4] |
|    | 6 <b>10,000 times</b>                                                                                     |     |
| 7. | List all the factors of 48.                                                                               | [4] |
|    | Solution: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48; Total of 10 factors.                                          |     |

8. Jane is able to stick 46 stamps on each page of her stamp albums. How many stamps can she stick [4] into 4 albums if each album has 36 pages?

| Solution: | Total stamps $= 46 \times 4 \times 36 = 6,624$ stamps |  |
|-----------|-------------------------------------------------------|--|
|           |                                                       |  |

9. Evaluate each of these following expressions:

| (a) | a) $12 \times [8 \times 7 \div (25 - 18)]$                    | [4] |
|-----|---------------------------------------------------------------|-----|
|     | <b>Solution:</b> $12 \times [8 \times 7 \div (25 - 18)] = 96$ |     |
| (b) | $\frac{4 \times 6 \div 3}{40 - (23 + 13)}$                    | [4] |
|     | Solution: $\frac{4 \times 6 \div 3}{40 - (23 + 13)} = 2$      |     |

(c)  $10^2 \div 5^2 + 2 \times 3^3 \times 6^2$ 

| Solution: $10^2 \div 5^2 + 2 \times 3^3 \times 6^2 = 1,948$ |  |
|-------------------------------------------------------------|--|
|-------------------------------------------------------------|--|

| 10. | Express 72 as the product of a power of 2 and a power of 3 in index form.                                              | [5]  |
|-----|------------------------------------------------------------------------------------------------------------------------|------|
|     | $10. \_ 2^3 \times 3^2$                                                                                                |      |
| 11. | Express 225 as the product of a power of 3 and a power of 5 in index form.                                             | [5]  |
|     | 11 $3^2 \times 5^2$                                                                                                    |      |
| 12. | Express 25769 in the expanded form using index notation (Exponential Notation).                                        | [5]  |
|     | Solution: $2 \times 10^4 + 5 \times 10^3 + 7 \times 10^2 + 6 \times 10^1 + 9 \times 10^o$                              |      |
|     |                                                                                                                        |      |
| 13. | Write the basic numeral for $(5 \times 10^6) + (3 \times 10^4) + (6 \times 10^3) + (2 \times 10^2) + (9 \times 10^0)$  | [5]  |
|     | <b>Solution:</b> $(5 \times 10^6) + (3 \times 10^4) + (6 \times 10^3) + (2 \times 10^2) + (9 \times 10^0) = 5,036,209$ |      |
|     |                                                                                                                        |      |
| 11  | After given $\frac{2}{2}$ of his colory to his mother David sport \$120 on food and \$20 on elethes and has            | [10] |

14. After given  $\frac{2}{7}$  of his salary to his mother David spent \$130 on food and \$80 on clothes and has [10] \$4445 left. How much did he give to his mother?

| Solution: | $1 - \frac{2}{7} = \frac{5}{7} \Rightarrow \frac{5}{7}$ of his salary is $= 130 + 80 + 4445 = $4655$ |
|-----------|------------------------------------------------------------------------------------------------------|
|           | $\frac{1}{5}$ of his saraly is = $4655 \div 5 = \$931$                                               |
|           | So $\frac{2}{5}$ of his saraly is $931 \times 2 = \$1, 862$                                          |

15. Mr Parker gave  $\frac{1}{2}$  of his money to his two sons. John received \$75 and Bob received \$125. What [10] fraction of Mr Parker's money did Bob receive?

| Solution: | Mr Parker's money is $2 \times (75 + 125) = $400$ |
|-----------|---------------------------------------------------|
|           | Bob received $=\frac{125}{400}=\frac{5}{16}.$     |