Student Name: __	Grade:
Date:	Score:

Table of Contents

1 Year 7 Term 1 Week 1 Homework Answers

1.1 Beginnings in Number 1
1.1.1 Egyptian numerals: 1
1.1.2 Roman numerals 2
1.1.3 Hindu-Arabic numerals 3
1.1.4 Place Value 4
1.1.5 Powers of Numbers 4
1.1.6 Expanded Notation 5
1.1.7 Exponential Notation 5
1.1.8 The Four Operations 6
1.2 Problem Solving 7
1.3 Diagnostic Test 8

This edition was printed on September 16, 2021.
Camera ready copy was prepared with the $\mathbf{I T}_{\mathbf{E}} \mathbf{X} 2 \mathbf{e}$ typesetting system.
Copyright © 2000-2021 Yimin Math Centre

1 Year 7 Term 1 Week 1 Homework Answers

1.1 Beginnings in Number

1.1. 1 Egyptian numerals:

Number	Symbol	Meaning
1	1	a vertical staff
10	\cap	a heel bone
100	9	a coiled rope
1000	\%	a lotus flower
10000	1	a bent reed or pointing finger
100000	\cdots	a burbot fish or tadpole
1000000	${ }^{\prime}$	an amazed man or God of infinity
10000000	Q	a religious symbol

- About 3000 years before the birth of Jesus Christ, the Egyptians had developed a tally system based on ten. Ten of one symbol can be replaced by one of another.
- The order of symbols does not affect the value of the numeral.
- The value of a numeral can be found by adding the values of the symbols used.

Example 1.1.1

Solution:

```
1 \(364=999 \cap \cap \cap \cap \cap \cap 1111\)
```

or
IIIคคกคกロの99
$211321143=$

3 \& $/ \int / \int / \int / \int 91=1070101$

1.1.2 Roman numerals

Roman numerals were very popular about 2000 years ago. The Roman number system is based on the idea of addition and subtraction.

Number	Symbol	Meaning
1	I	one finger
5	V	one hand
10	X	two Vs:
50	L	half a C
100	C	centum $=$ hundred
500	D	half an $\mathrm{M}: \mathrm{M}$
1000	M	M

- LX means 50 and 10.
- XL means 50 less 10 .
- Larger numerals are formed by placing a stroke above the symbol:
$\overline{\mathrm{V}}=5000$
$\overline{\mathrm{X}}=10000$
$\overline{\mathrm{L}}=50000$
$\overline{\mathrm{C}}=100000$
$\overline{\mathrm{D}}=500000$
$\overline{\mathrm{M}}=1000000$

- When a smaller numeral appears before a large one, it is subtracted from the large one:

$$
\begin{gathered}
\text { IV means } 5-1=4 \\
\text { XL means } 50-10=40
\end{gathered}
$$

- When a smaller numeral appears after the larger one, it is added to the large one.

$$
\begin{gathered}
\text { VI means } 5+1=6 \\
\text { LX means } 50+10=60
\end{gathered}
$$

- By repeating a numeral, its value is repeated.

$$
\begin{gathered}
\mathrm{XX}=10+10=20 \\
\mathrm{XXX}=10+10+10=30
\end{gathered}
$$

- By placing a bar over the numeral, its value is increased by 1000 times $(M=1000)$.

$$
\begin{array}{rl|ll}
\bar{V} & =5000 & \bar{X} & =10,000 \\
\bar{L} & =50,000 & \bar{C} & =100,000 \\
\bar{D} & =500,000 & \bar{M} & =1,000,000
\end{array}
$$

Example 1.1.2

Solution:

1. Change the Roman numerals into our own numerals:
(a) XXXIV $=10+10+10+4=34$
(b) CXXVII $=100+10+10+7=127$
2. Change these Hindu-Arabic numerals into Roman numerals:
(a) $1256=$ MCCLVI
(b) $214=$ CCXIV
(c) $2008=$ MMVIII

The table below gives more details of the Roman numeral system:

$\begin{aligned} & \mathrm{I} \\ & 1 \end{aligned}$	$\begin{gathered} \text { II } \\ 2 \end{gathered}$	$\begin{gathered} \text { III } \\ 3 \end{gathered}$	$\begin{gathered} \text { IV } \\ 4 \end{gathered}$	V	$\begin{gathered} \text { VI } \\ 6 \end{gathered}$	$\begin{gathered} \text { VII } \\ 7 \end{gathered}$	$\begin{gathered} \text { VIII } \\ 8 \end{gathered}$	$\begin{gathered} \text { IX } \\ 9 \end{gathered}$
X	XX	XXX	XL	L	LX	LXX	LXXX	XC
10	20	30	40	50	60	70	80	90
C	CC	CCC	CD	D	DC	DCC	DCCC	CM
100	200	300	400	500	600	700	800	900
$\begin{gathered} \mathrm{M} \\ 1000 \end{gathered}$								

1.1.3 Hindu-Arabic numerals

- These numerals, which we used today were invented by Hindus in India around 300 BC and were carried to Europe by Arabs who had invaded Spain in the eighth century.
- The position of a symbol is very important.
- The system has place value, based on ten.
- The invention of s symbol for zero was a significant step, as an empty space for zero could be misunderstood.

Exercise 1.1.1 Change these Roman numerals into our own numerals:

1. CMXLVII 947
2. DCCCVII \qquad 807
3. CCCXVI 316
4. CDXCVI \qquad
5. LXXXIV \qquad 8. $\bar{V} D C C X X I \quad \mathbf{5 , 7 2 1}$
6. CDXCIX \qquad 9. $D C C X C I I I$ \qquad 793
7. DLXVI 566
8. MMXXVII \qquad 2027

Exercise 1.1.2 Change the Hindu-Arabic numerals to Roman numerals:

\qquad

1. 212 CCXII
2. 649 DCXLIX
3. 444 CDXLIV
4. 369 CCCLXIX
5. 1,452 MCDLII
6. 2008 MMVIII
7. 542,637 $\bar{D} \bar{X} \bar{L} M M D C X X X V I I$
8. 4,304 M $\bar{V} C C C I V$

1.1.4 Place Value

Our number system today is based on the Hindu-Arabic system where the value of a number is determined by its place in a particular column as shown in the example below.

Example 1.1.3 What is the value of 2 and 6 in the numeral $3,250,698$?

- The place value of 2 is 200000 or two hundred thousand.
- The place value of 6 is 600 or six hundred.

Exercise 1.1.3 State the place value of $\mathbf{5}$ the following numerals:

1. 123450 \qquad
2. 520002 \qquad 5 hundred thousands
3. 125038 \qquad
4. 946532 \qquad 5 hundreds

1.1.5 Powers of Numbers

Example 1.1.4

Solution:

- $6 \times 6 \times 6=6^{3}=216$
- $10 \times 10 \times 10 \times 10 \times 10=10^{5}=100000$
- $6 \times 10^{3}=6 \times 1000=6000$

1.1.6 Expanded Notation

Example 1.1.5

Solution:

$$
\begin{gathered}
502,390=500,000+2,000+300+90 \\
\text { or } \quad 502,390=(5 \times 100,000)+(2 \times 1,000)+(3 \times 100)+(9 \times 10)
\end{gathered}
$$

Exercise 1.1.4 Write each of the following numbers in expanded notation:

1. 9,304 $9 \times 1,000+3 \times 100+4$
2. 50,073 \qquad $5 \times 10,000+7 \times 10+3$
3. 300,273 \qquad $3 \times 100,000+2 \times 100+7 \times 10+3$
4. 480,034 \qquad $4 \times 100,000+8 \times 10,000+3 \times 10+4$
5. 200,020 \qquad
6. 6,304,922
$6 \times 1,000,000+3 \times 100,000+4 \times 1,000+9 \times 100+2 \times 10+2$
7. $4,003,006$ \qquad $4 \times 1,000,000+3 \times 1,000+6$

1.1.7 Exponential Notation

Example 1.1.6

Solution:

$$
3,102,364=3 \times 10^{6}+1 \times 10^{5}+2 \times 10^{3}+3 \times 10^{2}+6 \times 10^{1}+4 \times 10^{0}
$$

Exercise 1.1.5 Write each of the following numbers in exponential notation:

1. 4,029

$$
4 \times 10^{3}+2 \times 10^{1}+9 \times 10^{o}
$$

2. 23,072

$$
2 \times 10^{4}+3 \times 10^{3}+7 \times 10^{1}+2 \times 10^{\circ}
$$

3. 20,238

$$
2 \times 10^{4}+2 \times 10^{2}+3 \times 10^{1}+8 \times 10^{\circ}
$$

4. 200,100

$$
2 \times 10^{5}+1 \times 10^{2}
$$

5. 500,830

$$
5 \times 10^{5}+8 \times 10^{2}+3 \times 10^{1}
$$

6. $3,472,408$ \qquad
7. $8,002,500$ $8 \times 10^{6}+2 \times 10^{3}+5 \times 10^{2}$

1.1.8 The Four Operations

Exercise 1.1.6 Additions

1. $1239+8761=$ \qquad 10,000
2. $515+307+93+982=$ \qquad
3. $19028+2908+1047=$ 22,983
4. $198235+29047+30009=$ \qquad

Exercise 1.1.7 Subtractions

1. $56213-17296=$ \qquad
2. $10002-8909=$ \qquad 1,093
3. $491625-38043=$ \qquad 453,582
4. $30074-13876=$ \qquad 16,198

Exercise 1.1.8 Multiplications

1. $2048 \times 23=$ \qquad 47,104
2. $1308 \times 70=$ \qquad
3. $1003 \times 303=$ \qquad 303,909
4. $645 \times 508=$ 327,660

Exercise 1.1.9 Divisions

1. $8950 \div 20=$ \qquad
2. $9630 \div 90=$ \qquad
3. $4212 \div 18=$ \qquad
4. $14950 \div 46=$ \qquad

1.2 Problem Solving

Exercise 1.2.1

1. Anna, Mark and Ken have a total savings of \$1980. Anna's savings is twice that of Mark's and Ken's Savings is thrice that of Anna's. How much more saving has Ken than Anna?

Solution:

$$
\begin{aligned}
& \text { tion: } \begin{cases}A+M+K=1980 \\
A=2 M & 2 M+M+6 M=19809 M=1980 \\
K=3 A & \end{cases} \\
& M=\$ 220 A=2 \times 220=\$ 440, K=3 \times 440=\$ 1320 K-A=1320-440=\$ 880 .
\end{aligned}
$$

2. 200 trees were planted at equal distance apart along the sides of a straight expressway. The distance between the first and the last tree is 396 m . What is the distance between the first and the fifteenth tree?

Solution:
100 trees on each side interval $=396 \div 99=4 \mathrm{~m}$
The ditance between the first and fifteenth $4 \times 14=56 \mathrm{~m}$
3. During a sale, Shop A and Shop B were selling similar T-shirts at $\$ 14$ and $\$ 12$ respectively. Before the sale, the price of T-shirts was the same in both shops. A sum of $\$ 160$ could be saved by buying 8 T-shirts from each shop during the sale. How much was the price of a T-shirt from each shop before the discount?

Solution: \quad Let the price before the sale be $P \Rightarrow 16 \times P-(8 \times 14+8 \times 12)=160$

$$
16 P-208=160 \Rightarrow 16 P=368 \Rightarrow P=368 \div 16=\$ 23 .
$$

4. For every question Jane answered correctly in a quiz, she scored 8 points. 2 points were deducted for each incorrect answer. For every 10 questions Jane answered, 2 were incorrect. She scored a total 360 points in the quiz.
(a) How many questions did Jane answer altogether?
```
Solution: For every 10 question, 2 incorrect, }=>8\times8-2\times2=6
    360\div60=6 sets, =>6\times10=60 questions in total.
```

(b) How many point less did she score because of the incorrect answers?

$$
\text { Solution: } \quad 12 \text { incorrect questions, } 12 \times 10=120 \text { points. }
$$

1.3 Diagnostic Test

1. Write the Roman numeral for each of the following:
(a) 253
(a) \qquad
(b) 2678
(b) \qquad
(b) MMDCLXXVIII
(c) 944
(c) CMXLIV
(d) 24,605
(d) \qquad
2. Write each of these in Hindu-Arabic numerals:
(a) $X X V I$
(a) \qquad
(b) $D X X X V I I$
(b) \qquad 537
(c) $M M D C C X X X I I I$
(c) $\quad \mathbf{2 , 7 3 3}$
(d) $\bar{C} \bar{C} \bar{L} \bar{X} M \bar{X} X L$
(d) \qquad
269,040
\qquad
3. Write the smallest 4 digit number with 8 in tens place in which no numeral is repeated.
4. \qquad 1,082
5. Write the largest 4 digit number with 3 in hundreds place in which no numeral is repeated.
\qquad
6. 9,387
7. How many times greater is the value of the first 5 than the value of the second 5 in the numeral 3500350?
8.
9. List all the factors of 48 .

Solution:
 $$
1,2,3,4,6,8,12,16,24,48 ; \text { Total of } 10 \text { factors. }
$$

 $1,2,3,4,6,8,12,16,24,48$; Total of 10 factors.

 $1,2,3,4,6,8,12,16,24,48$; Total of 10 factors.}8. Jane is able to stick 46 stamps on each page of her stamp albums. How many stamps can she stick into 4 albums if each album has 36 pages?
```
Solution: Total stamps = 46\times4\times36=6,624 stamps
```

9. Evaluate each of these following expressions:
(a) $12 \times[8 \times 7 \div(25-18)]$

Solution:

$$
12 \times[8 \times 7 \div(25-18)]=96
$$

(b) $\frac{4 \times 6 \div 3}{40-(23+13)}$

$$
\text { Solution: } \quad \frac{4 \times 6 \div 3}{40-(23+13)}=2
$$

(c) $10^{2} \div 5^{2}+2 \times 3^{3} \times 6^{2}$

Solution:

$$
10^{2} \div 5^{2}+2 \times 3^{3} \times 6^{2}=1,948
$$

10. Express 72 as the product of a power of 2 and a power of 3 in index form.
\qquad
11. Express 225 as the product of a power of 3 and a power of 5 in index form.
12. \qquad $3^{2} \times 5^{2}$
13. Express 25769 in the expanded form using index notation (Exponential Notation).

Solution:

$$
2 \times 10^{4}+5 \times 10^{3}+7 \times 10^{2}+6 \times 10^{1}+9 \times 10^{o}
$$

13. Write the basic numeral for $\left(5 \times 10^{6}\right)+\left(3 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(9 \times 10^{0}\right)$

$$
\text { Solution: } \quad\left(5 \times 10^{6}\right)+\left(3 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(9 \times 10^{0}\right)=5,036,209
$$

14. After given $\frac{2}{7}$ of his salary to his mother David spent $\$ 130$ on food and $\$ 80$ on clothes and has [10] $\$ 4445$ left. How much did he give to his mother?

$$
\begin{array}{ll}
\hline \text { Solution: } & 1-\frac{2}{7}=\frac{5}{7} \Rightarrow \frac{5}{7} \text { of his salary is }=130+80+4445=\$ 4655 \\
\frac{1}{5} \text { of his saraly is }=4655 \div 5=\$ 931 \\
\text { So } \frac{2}{5} \text { of his saraly is } 931 \times 2=\$ 1,862
\end{array}
$$

15. Mr Parker gave $\frac{1}{2}$ of his money to his two sons. John received $\$ 75$ and Bob received $\$ 125$. What [10] fraction of Mr Parker's money did Bob receive?

$$
\begin{array}{ll}
\text { Solution: } & \text { Mr Parker's money is } 2 \times(75+125)=\$ 400 \\
& \text { Bob received }=\frac{125}{400}=\frac{5}{16} .
\end{array}
$$

