Year 8 Term 1 Homework

Student Name: ___	Grade: __
Date:	Score:

Table of contents

1 Year 8 Term 1 Week 1 Homework 1
1.1 Topic 1 - Percentages 1
1.1.1 The Meaning of Percentages 1
1.1.2 Converting Between Fractions and Percentages 3
1.1.3 Converting Between Decimals and Percentages 6
1.1.4 Common Conversions 7
1.2 Topic 2 - Algebra 8
1.2.1 Adding and Subtracting Like Terms 8
1.2.2 Multiplying Algebraic Terms 9
1.2.3 Dividing Algebraic Terms 10
1.3 Topic 3 - Pythagoras' Theorem 11
1.3.1 Pythagoras' Theorem 11
1.3.2 The converse of Pythagoras' Theorem 11
1.4 Miscellaneous Exercises 12

This edition was printed on May 11, 2023 with Worked Solutions.
Camera ready copy was prepared with the $\mathbf{I A T}_{\mathbf{E}} \mathbf{X 2} \mathbf{2 e}$ typesetting system.
Copyright © 2000-2023 Yimin Math Centre (www.yiminmathcentre.com)

1 Year 8 Term 1 Week 1 Homework

1.1 Topic 1 - Percentages

1.1.1 The Meaning of Percentages

Definition:

- The Term per cent means some thing out of one hundred.
- The Symbol for per cent is \%

Example 1.1.1

1. 7% means $\frac{7}{100}$ or seven out of one hundred.
2. In the diagram shown, what percentage of the figure is:

(a) Shaded?
(b) Unshaded?

Solution:

(a) 50 out of 100 squares are shaded or 50% of the figure is shaded.
(b) 50 out of 100 squares are shaded or 50% of the figure is unshaded.

Exercise 1.1.1 Each of the following square has been divided into 100 squares. State the percentage of each figure that is shaded.

(1) \qquad _,
(2) \qquad

Exercise 1.1.2 Place each of the percentages on the number line.

1. 15%

2. 25%

3. 85%

4. 90%

Exercise 1.1.3 The inflation rate in a certain country is quoted as begin $\mathbf{5 0 \%}$.

1. What does this mean?
\qquad
\qquad
2. If a pen cost $\$ 1.20$ last year, how much would you expect it to cost this year?
\qquad
\qquad

Exercise 1.1.4

1. If 25% of the people in a crowd are children, what percentage are adults?
\qquad
\qquad
2. Charles got 76% of the words correct in a spelling test. What percentage of the words did he spell incorrectly?
\qquad
\qquad
3. If a man lost 82% of his money while gambling at the casino, what percentage of his money does he have left?
\qquad
\qquad

1.1.2 Converting Between Fractions and Percentages

To covert a percentage to a fraction:

- Write the number in front of the percentage sign as the numerator and 100 as the denominator.
- Simplify if it is possible.

Example 1.1.2 Express each of these percentages as a fraction in its simplest form

1. $17 \%=\frac{17}{100}$
2. $25 \%=\frac{25}{100}=\frac{1}{4}$
3. $120 \%=\frac{120}{100}=1 \frac{20}{100}=1 \frac{1}{5}$

Method 1:

If the denominator is a factor of $10,100,1000$ etc:

- Convert the fraction to one with a denominator of 100 .
- Write the numerator followed by a percentage sign.

Example 1.1.3 Convert each of these fractions to a percentage using method 1

1. $\frac{12}{100}=12 \%$
2. $\frac{8}{10}=\frac{8 \times 10}{10 \times 10}=\frac{80}{100}=80 \%$
3. $2 \frac{3}{20}=\frac{3 \times 5}{20 \times 5}=\frac{215}{100}=215 \%$

Method 2:

If the denominator is not a factor of 10,100 or 1000 , multiply the fraction by $\frac{100}{1} \%$

Example 1.1.4 convert each of these fractions to a percentage using method 2

1. $\frac{1}{6}=\frac{1}{6} \times \frac{100}{1} \%=\frac{100}{6} \%=16 \frac{2}{3} \%$
2. $\frac{3}{7}=\frac{3}{7} \times \frac{100}{1} \%=\frac{300}{7} \%=42 \frac{6}{7} \%$
3. $3 \frac{3}{8}=\frac{27}{8} \times \frac{100}{1} \%=\frac{2700}{8} \%=337 \frac{1}{2} \%$

Exercise 1.1.5 Express each of these percentages as a fraction.

1. $12 \%=$ \qquad
2. $45 \%=$ \qquad
3. $87 \%=$ \qquad
4. $112 \%=$ \qquad
5. $15.5 \%=$ \qquad

Exercise 1.1.6 Express each of these fractions as a percentage.

1. $\frac{23}{100}=$ \qquad
2. $\frac{12}{50}=$ \qquad
3. $\frac{7}{20}=$ \qquad
4. $\frac{123}{100}=$ \qquad
5. $\frac{204}{200}=$ \qquad

Exercise 1.1.7 Convert each of these percentages to a fraction in its simplest form.

1. $2 \%=$ \qquad
2. $24 \%=$ \qquad
3. $38 \%=$ \qquad
4. $85 \%=$ \qquad
5. $24.2 \%=$ \qquad

Exercise 1.1.8 Convert each of these fractions to a percentage.

1. $\frac{7}{20}=$ \qquad
2. $\frac{3}{25}=$ \qquad
3. $\frac{27}{50}=$ \qquad
4. $\frac{1}{4}=$ \qquad
5. $\frac{42}{125}=$

Exercise 1.1.9 Express each integer as a percentage.

1. $2=$ \qquad
2. $12=$ \qquad
3. $22=$ \qquad

Exercise 1.1.10 Express each of these percentages as an integer

1. $500 \%=$ \qquad
2. $800 \%=$ \qquad
3. $1000 \%=$ \qquad

Exercise 1.1.11 Convert these percentages to mixed numerals.

1. $125 \%=$ \qquad
2. $205 \%=$ \qquad
3. $624 \%=$ \qquad
4. $560 \%=$ \qquad
5. $108 \%=$ \qquad

Exercise 1.1.12 Convert these mixed numerals to percentages.

1. $2 \frac{7}{10}=$ \qquad
2. $1 \frac{13}{20}=$ \qquad
3. $2 \frac{1}{4}=$ \qquad
4. $3 \frac{4}{5}=$ \qquad
5. $5 \frac{24}{25}=$ \qquad
6. $24 \frac{5}{8}=$ \qquad

1.1.3 Converting Between Decimals and Percentages

To convert a percentage to a decimal:

- convert the percentage to a fraction with a denominator of 100 .
- divide the numerator by 100 by moving the decimal point two places to the left.

Example 1.1.5 Convert each of these percentages to a decimal.

1. $15 \%=\frac{15}{100}=0.15$
2. $80.5 \%=\frac{80.5}{100}=0.805$
3. $123 \%=\frac{123}{100}=1.23$

Exercise 1.1.13 Convert each of these percentages to a decimal.

1. $8 \%=$ \qquad
2. $2.8 \%=$ \qquad
3. $108 \%=$ \qquad

To convert a decimal to a percentage:

- convert the decimal to a fraction with a denominator of 100 .
- write the numerator followed by a percentage sign (\%).

Example 1.1.6 Convert each of these decimals to a percentage.

1. $0.24=\frac{24}{100}=24 \%$
2. $2.62=2 \frac{62}{100}=262 \%$
3. $0.345=\frac{345}{1000}=\frac{34.5}{100}=34.5 \%$

Exercise 1.1.14 Convert each of these decimals to a percentage.

1. $1.18=$ \qquad
2. $2.02=$ \qquad
3. $0.27=$ \qquad

Exercise 1.1.15 Convert each of these decimals to a percentage.

1. $0.005=$ \qquad
2. $0.126=$ \qquad
3. $12.5=$ \qquad
4. $0.305=$ \qquad
5. $0.028=$ \qquad
6. $123.456=$ \qquad

Exercise 1.1.16 Convert each of these percentages to a decimal.

1. $5 \frac{1}{2} \%=$ \qquad
2. $35 \frac{3}{4} \%=$ \qquad
3. $52 \frac{3}{5} \%=$ \qquad
4. $18 \frac{1}{10} \%=$ \qquad
5. $66 \frac{4}{25} \%=$ \qquad
6. $74 \frac{4}{5} \%=$ \qquad

1.1.4 Common Conversions

The following conversions between fractions, decimal and percentages should be memorised for use in later problems.

Fractions	Decimals	Percentages	Fractions	Decimals	Percentages
$\frac{1}{10}$	0.1	10%	$\frac{1}{5}$	0.2	20%
$\frac{1}{8}$	0.125	12.5%	$\frac{2}{5}$	0.4	40%
$\frac{1}{4}$	0.25	25%	$\frac{3}{5}$	0.6	60%
$\frac{1}{3}$	$0 . \dot{3}$	$33 \frac{1}{3} \%$	$\frac{4}{5}$	0.8	80%
$\frac{1}{2}$	0.5	50%			
$\frac{2}{3}$	$0 . \dot{6}$	$66 \frac{2}{3} \%$			
$\frac{3}{4}$	0.75	75%			

1.2 Topic 2 - Algebra

Algebra terms with identical pronumerals are called like terms. Only like terms can be added or subtracted.

To combine the like terms in an algebra expression:

- add or subtract the co-efficients
- keep the same pronumeral(s).

1.2.1 Adding and Subtracting Like Terms

Example 1.2.1

1. $12 b+3 b=15 b$
2. $12 a b-6 a b=6 a b$
3. $2 x+5 x-3 x=4 x$
4. $x^{2}-y-4 x^{2}+6=-3 x^{2}-y+6$

Exercise 1.2.1

1. $6 p q+2 p-2 p q+3 q=$ \qquad
2. $2 x^{2}+5 x+3 x^{2}-6 x=$ \qquad
3. $7 k-3+3 k+2=$ \qquad
4. $3 m-2 n+6 m-n=$ \qquad
5. $-2 p q+5+4 p q-9 p q=$ \qquad
6. $6 x y+4-4 x y-7 y=$ \qquad
7. $-2 x^{2}-y-4 x^{2}+5 y=$ \qquad
8. A rectangle has length $3 x \mathrm{~cm}$ and width $5 y \mathrm{~cm}$. Find:
(a) its area in terms of x and y \qquad
(b) its perimeter in terms of x and y \qquad
(c) the area of the rectangle if $x=4.2 \mathrm{~cm}$ and $y=6.5 \mathrm{~cm}$ \qquad

1.2.2 Multiplying Algebraic Terms

To multiply algebraic terms:

- multiply the co-efficients
- multiply the pronumeral(s).

Example 1.2.2 Evaluate the following expressions:

1. $3 a \times 4 b=12 a b$
2. $\frac{1}{4} \times 16 p q=4 p q$
3. $(-3 x) \times(-6 y)=18 x y$
4. $\frac{3 x}{4} \times \frac{y}{12}=\frac{x y}{16}$

Exercise 1.2.2 Simplify these expressions:

1. $3 a \times 4 b \times 5 c=$ \qquad
2. $12 x \times 7 y=$ \qquad
3. $20 x \times \frac{1}{4}=$ \qquad
4. $(-2 a) \times(-3 b) \times(-4 c)=$ \qquad
5. $3 m n \times 5 m p=$ \qquad
6. $6 a b \times 7 b c \times 4 a c=$ \qquad
7. $(-2 a) \times(-3 a b) \times(-5 b c)=$ \qquad
8. $12 \times(-3 x y) \times 2 y=$ \qquad

1.2.3 Dividing Algebraic Terms

To divide algebraic terms:

- express the division in fraction form
- divide the co-efficients
- divide the pronumerals.

Example 1.2.3 Simplify the following expressions:

1. $\frac{25 m n}{5 m}=5 n$
2. $\frac{21 p^{2} q}{7 p}=3 p q$
3. $\frac{36 x y}{6 y}=6 x$
4. $42 x y \div 7 x=\frac{42 x y}{7 x}=6 y$
5. $32 a b c \div(-8 a c)=\frac{32 a b c}{(-8 a c)}=-4 b$

Exercise 1.2.3

1. $\frac{5 a}{5}=$ \qquad
2. $\frac{4 b}{b}=$ \qquad
3. $\frac{35 x y}{y}=$ \qquad
4. $\frac{32 x y z}{8 x z}=$ \qquad
5. $\frac{24 p q^{2}}{6 q}=$
6. $28 a b c^{2} \div 7 a c=$ \qquad
7. $56 k^{2} \div 8 k=$ \qquad
8. $-15 p^{2} \div(-3 p)=$ \qquad
9. $x^{2} y \div x y^{2}=$ \qquad
10. $25 m n^{2} \div 5 m^{2} n=$ \qquad

1.3 Topic 3 - Pythagoras' Theorem

1.3.1 Pythagoras' Theorem

The longest side on a right-angle triangle is called the hypotenuse.

In any right-angle triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.
This can be written as: $\quad c^{2}=a^{2}+b^{2}$

1.3.2 The converse of Pythagoras' Theorem

If the square on one side of a triangle to the sum of the squares on the other sides, then the angle between the two short sides is a right angle.

Example 1.3.1 Determine whether this triangle is right-angled.

Solution: $11^{2}=7^{2}+9^{2}$

$$
121=49+81
$$

which is not true,
$\therefore \triangle A B C$ is not right-angled

1.4 Miscellaneous Exercises

Exercise 1.4.1 Convert each percentage to a fraction in its simplest form.

1. $0.7 \%=$ \qquad
2. $2.4 \%=$ \qquad
3. $28.5 \%=$ \qquad
4. $86.2 \%=$ \qquad
5. $\frac{3}{4} \%=$ \qquad
6. $2 \frac{1}{3} \%=$ \qquad
7. $6 \frac{4}{5} \%=$ \qquad
8. $11 \frac{1}{4} \%=$ \qquad

Exercise 1.4.2 Convert each of these decimals to a percentage.

1. $1.2=$ \qquad
2. $1.24=$ \qquad
3. $3 . \dot{3}=$ \qquad
4. $8 . \dot{6}=$ \qquad
5. $2.125=$ \qquad

Exercise 1.4.3 Convert each the following percentages to a decimal.

1. $125 \frac{1}{2} \%=$
2. $185 \%=$ \qquad
3. $126 \frac{2}{3} \%=$ \qquad
4. $475 \%=$ \qquad
5. $225 \%=$ \qquad

Exercise 1.4.4 Simplify the following expressions:

1. $3 a^{2}-4 b c-2 a-a^{2}+2 b c+6 b=$ \qquad
2. $32 u^{2} v \div 4 u v w=$ \qquad
3. $x^{2} y z \div x y^{2} z=$ \qquad
4. $6 a b \times 3 a c \div 2 a c=$ \qquad
5. $49 p k \div 7 p^{2}=$ \qquad
6. $\frac{5 u}{21} \times 7 u v=$ \qquad
7. $\frac{x}{3} \times \frac{y}{6}=$ \qquad

Exercise 1.4.5

1. Emma has $3 m$ pencils. Alice has 4 times as many pencils as Emma. How many pencils do they have altogether?
\qquad
\qquad
2. Addison went shopping with $\$ p$. She brought 5 T-shirts which cost $\$ q$ each. How much money had she left?
\qquad
\qquad
3. Nicholas earns $\$ 61.60$ for working 8 hours. How much would Nicholas earn if he worked 35 hours at this wage rate?
\qquad
\qquad
4. 15 years ago, Bob was $8 m$ years old. How old was Bob $3 m$ years ago?
\qquad
\qquad

Exercise 1.4.6 The $\triangle \mathrm{ABC}$ is a isosceles triangle in the figure shown below. Find the area of the shaded region in terms of a. Express your answer in its simplest form.

\qquad
Exercise 1.4.7 Adam has $\$ \mathrm{x}$. Bob has $\$ 12 \mathrm{y}$ more than Adam. Cathy has $\$ 4 \mathrm{z}$ less than Bob.

1. Find Cathy's money in terms of x, y and z.
\qquad
\qquad
\qquad
2. Find the total amount of money they have altogether in terms of x, y and z.
\qquad
\qquad
\qquad
3. If $x=100, y=4$ and $z=6$, who has the most?
\qquad
\qquad
\qquad
4. Find the difference between the most amount and the least.
\qquad
\qquad
\qquad
