		Stude	ent Name:	Grade:			
		Date:		Score:			
Т	able	of co	ntents		X	5	
1	Yea	r 8 Terr	n 1 Week 1 Worked Solutions				1
	1.1	Topic	1 — Percentages				 1
		1.1.1	The Meaning of Percentages		.)	• • • • • •	 1
		1.1.2	Converting Between Fractions and Percentag	es			 3
		1.1.3	Converting Between Decimals and Percentag	es			 6
		1.1.4	Common Conversions				 7
	1.2	Topic	2 — Algebra				8
		1.2.1	Adding and Subtracting Like Terms				8
		1.2.2	Multiplying Algebraic Terms				9
		1.2.3	Dividing Algebraic Terms				10
	1.3	Topic	3 — Pythagoras' Theorem				11
		1.3.1	Pythagoras' Theorem				11
		1.3.2	The converse of Pythagoras' Theorem				11
	1.4	Misce	llaneous Exercises		•••••		 12

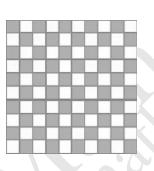
Year 8 Term 1 Homework Worked Solutions

This edition was printed on May 11, 2023.

Camera ready copy was prepared with the $\came{LAT_EX2e}$ typesetting system.

Copyright © 2000 - 2023 Yimin Math Centre (www.yiminmathcentre.com)

1 Year 8 Term 1 Week 1 Worked Solutions

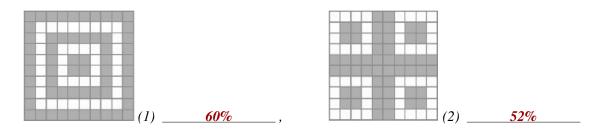

- **1.1** Topic 1 Percentages
- **1.1.1 The Meaning of Percentages**

Definition:

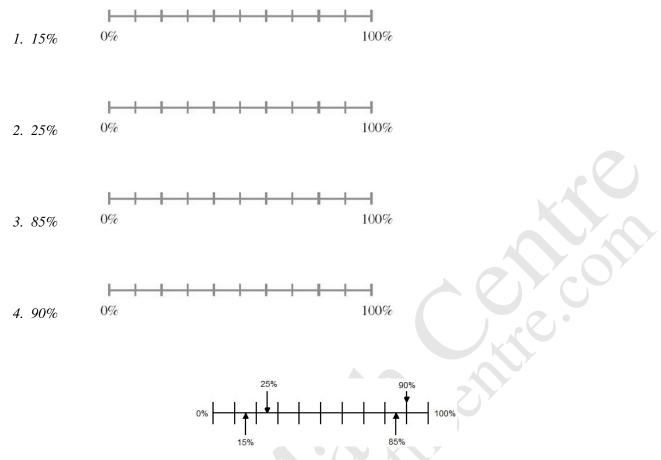
- The Term **per cent** means some thing out of one hundred.
- The Symbol for per cent is %

Example 1.1.1

- 1. 7% means $\frac{7}{100}$ or seven out of one hundred.
- 2. In the diagram shown, what percentage of the figure is:



- (a) Shaded?
- (b) Unshaded?


Solution:

- (a) 50 out of 100 squares are shaded or 50% of the figure is shaded.
- (b) 50 out of 100 squares are shaded or 50% of the figure is unshaded.

Exercise 1.1.1 Each of the following square has been divided into 100 squares. State the percentage of each figure that is shaded.

Copyright © 2000 - 2023 Yimin Math Centre (www.yiminmathcentre.com)

Exercise 1.1.2 Place each of the percentages on the number line.

Exercise 1.1.3 The inflation rate in a certain country is quoted as begin 50%.

1. What does this mean?

Solution: everything will be increasing by 50%.

2. If a pen cost \$1.20 last year, how much would you expect it to cost this year?

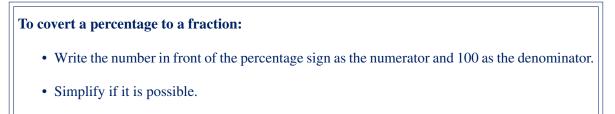
Solution: $$1.2 \times 150\% = 1.80

Exercise 1.1.4

1. If 25% of the people in a crowd are children, what percentage are adults?

	Solution:	100% - 25% = 75%.	
--	-----------	-------------------	--

2. Charles got 76% of the words correct in a spelling test. What percentage of the words did he spell incorrectly?


Solution:

100% - 76% = 24%

3. If a man lost 82% of his money while gambling at the casino, what percentage of his money does he have *left*?

Solution:	100% - 82% = 18%
-----------	------------------

1.1.2 Converting Between Fractions and Percentages

Example 1.1.2 Express each of these percentages as a fraction in its simplest form

- *1.* $17\% = \frac{17}{100}$
- 2. $25\% = \frac{25}{100} = \frac{1}{4}$
- 3. $120\% = \frac{120}{100} = 1\frac{20}{100} = 1\frac{1}{5}$

Method 1:

If the denominator is a factor of 10, 100, 1000 etc:

- Convert the fraction to one with a denominator of 100.
- Write the numerator followed by a percentage sign.

Example 1.1.3 Convert each of these fractions to a percentage using method 1

- *1.* $\frac{12}{100} = 12\%$
- 2. $\frac{8}{10} = \frac{8 \times 10}{10 \times 10} = \frac{80}{100} = 80\%$
- 3. $2\frac{3}{20} = \frac{3\times5}{20\times5} = \frac{215}{100} = 215\%$

Method 2: If the denominator is not a factor of 10, 100 or 1000, multiply the fraction by $\frac{100}{1}\%$

Example 1.1.4 convert each of these fractions to a percentage using method 2

- $I. \ \frac{1}{6} = \frac{1}{6} \times \frac{100}{1}\% = \frac{100}{6}\% = 16\frac{2}{3}\%$
- 2. $\frac{3}{7} = \frac{3}{7} \times \frac{100}{1}\% = \frac{300}{7}\% = 42\frac{6}{7}\%$
- 3. $3\frac{3}{8} = \frac{27}{8} \times \frac{100}{1}\% = \frac{2700}{8}\% = 337\frac{1}{2}\%$

Exercise 1.1.5 Express each of these percentages as a fraction.

1.	12% =	<u>3</u>
2.	45% =	<u>9</u>
3.	87% =	<u>87</u> 100
4.	112% =	13/25
5.	15.5% =	<u>31</u> 200
Exer	cise 1.1.6 Express e	each of these fractions as a percentage.
1.	$\frac{23}{100}$ =	23%
2.	$\frac{12}{50} =$	24%
3.	$\frac{7}{20} =$	35%
4.	$\frac{123}{100} =$	123%
5.	$\frac{204}{200}$ =	102%
Exer	cise 1.1.7 Convert o	each of these percentages to a fraction in its simplest form.
1.	2% =	$\frac{1}{50}$
2.	24% =	$\frac{6}{25}$
3.	38% =	$\frac{19}{50}$
4.	85% =	<u>17</u> 20
5.	24.2% =	<u>121</u> 500
Exer	cise 1.1.8 Convert o	each of these fractions to a percentage.
		35%
		12%

 $3. \frac{27}{50} = 54\%$

4. $\frac{1}{4} = 25\%$

5. $\frac{42}{125} = 33.6\%$

Exercise 1.1.9 Express each integer as a percentage.

1.	2 =	200%	
2.	12 =	1200%	
3.	22 =	2200%	
Exer	cise 1.1.10 Expre	ess each of these p	percentages as an integer
1.	500% =	5	
3.	1000% =	10	
Exer	cise 1.1.11 Conv	ert these percenta	ages to mixed numerals.
1.	125% =	$1\frac{1}{4}$	
2.	205% =	$2\frac{1}{20}$	
3.	624% =	$6\frac{6}{25}$	
4.	560% =	$5\frac{3}{5}$	
5.	108% =	$1\frac{2}{25}$	
Exer	ccise 1.1.12 Conv	ert these mixed n	umerals to percentages.
1.	$2\frac{7}{10} =$	270%	
2.	$1\frac{13}{20} =$	165%	
3.	$2\frac{1}{4} =$	225%	

4. $3\frac{4}{5} = 380\%$

 $5. 5\frac{24}{25} = 596\%$

6. $24\frac{5}{8} = 2462.5\%$

1.1.3 Converting Between Decimals and Percentages

To convert a percentage to a decimal:

- convert the percentage to a fraction with a denominator of 100.
- divide the numerator by 100 by moving the decimal point two places to the left.

Example 1.1.5 Convert each of these percentages to a decimal.

- 1. $15\% = \frac{15}{100} = 0.15$
- 2. $80.5\% = \frac{80.5}{100} = 0.805$
- 3. $123\% = \frac{123}{100} = 1.23$

Exercise 1.1.13 Convert each of these percentages to a decimal.

- 1. 8% = _____0.08
- 2. 2.8% = _____0.028
- 3. 108% = _____1.08

To convert a decimal to a percentage:

- convert the decimal to a fraction with a denominator of 100.
- write the numerator followed by a percentage sign (%).

Example 1.1.6 Convert each of these decimals to a percentage.

- 1. $0.24 = \frac{24}{100} = 24\%$
- 2. $2.62 = 2\frac{62}{100} = 262\%$
- 3. $0.345 = \frac{345}{1000} = \frac{34.5}{100} = 34.5\%$

Exercise 1.1.14 Convert each of these decimals to a percentage.

1. 1.18 = 118% 2. 2.02 = 202% 3. 0.27 = 27%

Exercise 1.1.15 Convert each of these decimals to a percentage.

1. 0.005 =	0.5%	
2. 0.126 =	12.6%	
3. 12.5 =	1250%	
4. 0.305 =	30.5%	
5. 0.028 =	2.8%	
6. 123.456 =	12345.6%	
	wert each of these percer	
2	0.3575	
-	0.526	
4. $18\frac{1}{10}\%$ =	0.181	
5. $66\frac{4}{25}\%$ =	0.6616	
6. $74\frac{4}{5}\%$ =	0.748	

1.1.4 Common Conversions

The following conversions between fractions, decimal and percentages should be memorised for use in later problems.

Fractions	Decimals	Percentages	Fractions	Decimals	Percentages
$\frac{1}{10}$	0.1	10%	$\frac{1}{5}$	0.2	20%
$\frac{1}{8}$	0.125	12.5%	$\frac{2}{5}$	0.4	40%
$\frac{1}{4}$	0.25	25%	$\frac{3}{5}$	0.6	60%
$\frac{1}{3}$	$0.\dot{3}$	$33\frac{1}{3}\%$	$\frac{4}{5}$	0.8	80%
$\frac{1}{2}$	0.5	50%			
$\frac{2}{3}$	$0.\dot{6}$	$66\frac{2}{3}\%$			
$\frac{3}{4}$	0.75	75%			

1.2 Topic 2 — Algebra

Algebra terms with identical pronumerals are called like terms. Only like terms can be added or subtracted.

To combine the like terms in an algebra expression:

- add or subtract the co-efficients
- keep the same pronumeral(s).

1.2.1 Adding and Subtracting Like Terms

Example 1.2.1

- *1.* 12b + 3b = 15b
- 2. 12ab 6ab = 6ab
- 3. 2x + 5x 3x = 4x
- 4. $x^2 y 4x^2 + 6 = -3x^2 y + 6$

Exercise 1.2.1

- 1. 6pq + 2p 2pq + 3q = 4pq + 2p + 3q
- 2. $2x^2 + 5x + 3x^2 6x = 5x^2 6x$
- 3. 7k 3 + 3k + 2 = 10k 1
- 4. 3m 2n + 6m n = 9m 3n
- 5. -2pq + 5 + 4pq 9pq = -7pq + 5
- 6. 6xy + 4 4xy 7y = 2xy 7y + 4
- 7. $-2x^2 y 4x^2 + 5y = -6x^2 + 4y$
- 8. A rectangle has length 3x cm and width 5y cm. Find:

(a) its area in terms of x and y $15xy cm^2$	
(b) its perimeter in terms of x and y $6x + 10y cm$	
(c) the area of the rectangle if $x = 4.2$ cm and $y = 6.5$ cm	$409.5 cm^2$

1.2.2 Multiplying Algebraic Terms

To multiply algebraic terms:

- multiply the co-efficients
- multiply the pronumeral(s).

Example 1.2.2 Evaluate the following expressions:

- *1.* $3a \times 4b = 12ab$
- 2. $\frac{1}{4} \times 16pq = 4pq$
- 3. $(-3x) \times (-6y) = 18xy$
- 4. $\frac{3x}{4} \times \frac{y}{12} = \frac{xy}{16}$

Exercise 1.2.2 Simplify these expressions:

- $1. \ 3a \times 4b \times 5c = \underline{60abc}$
- $2. 12x \times 7y = \underline{\qquad \qquad 84xy}$
- 3. $20x \times \frac{1}{4} = 5x$
- 4. $(-2a) \times (-3b) \times (-4c) = -24abc$
- 5. $3mn \times 5mp = 15m^2np$
- $6. \ 6ab \times 7bc \times 4ac = \underline{168a^2b^2c^2}$
- 7. $(-2a) \times (-3ab) \times (-5bc) = -30a^2b^2c$
- 8. $12 \times (-3xy) \times 2y = -72xy^2$

1.2.3 Dividing Algebraic Terms

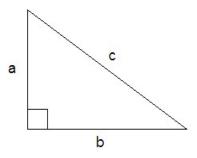
To divide algebraic terms:

- express the division in fraction form
- divide the co-efficients
- divide the pronumerals.

Example 1.2.3 Simplify the following expressions:

- 1. $\frac{25mn}{5m} = 5n$
- 2. $\frac{21p^2q}{7p} = 3pq$
- $3. \ \frac{36xy}{6y} = 6x$
- 4. $42xy \div 7x = \frac{42xy}{7x} = 6y$
- 5. $32abc \div (-8ac) = \frac{32abc}{(-8ac)} = -4b$

Exercise 1.2.3

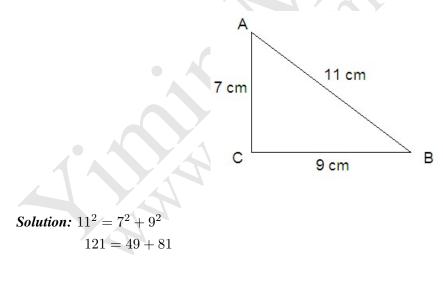

1.	$\frac{5a}{5} = $ a
2.	$\frac{4b}{b} = 4$
3.	$\frac{35xy}{y} = \underline{\qquad \qquad 35x}$
	$\frac{32xyz}{8xz} =$
5.	$\frac{24pq^2}{6q} = \underline{4pq}$
6.	$28abc^2 \div 7ac = \underline{4bc}$
7.	$56k^2 \div 8k = 7k$
8.	$-15p^2 \div (-3p) = \underline{5p}$
9.	$x^2y \div xy^2 = \underline{\qquad \qquad \frac{x}{y}}$
10.	$25mn^2 \div 5m^2n = \underline{5n}{m}$

Copyright © 2000 - 2023 Yimin Math Centre (www.yiminmathcentre.com)

1.3 Topic 3 — Pythagoras' Theorem

1.3.1 Pythagoras' Theorem

The longest side on a right-angle triangle is called the **hypotenuse**.

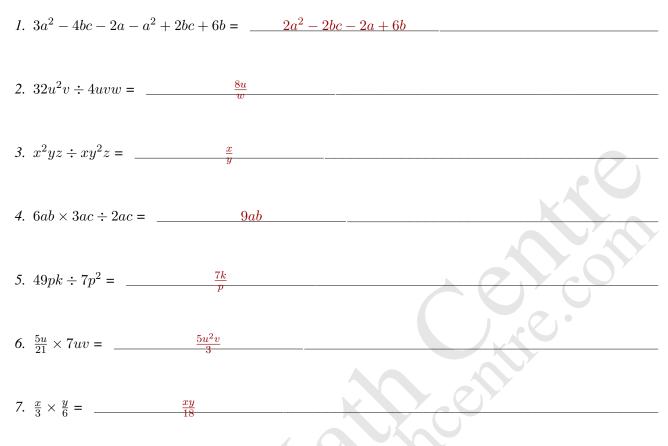

In any right-angle triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

This can be written as: $c^2 = a^2 + b^2$

1.3.2 The converse of Pythagoras' Theorem

If the square on one side of a triangle to the sum of the squares on the other sides, then the angle between the two short sides is a right angle.

which is not true,


 $\therefore \triangle ABC$ is not right-angled

1.4 Miscellaneous Exercises

Exercise 1.4.1 Convert each percentage to a fraction in its simplest form.

1.	0.7% =	$\frac{7}{1000}$	
2.	2.4% =	$\frac{3}{125}$	
3.	28.5% =	<u></u>	$\overline{(7)}$
4.	86.2% =	<u>431</u> 500	
5.	$\frac{3}{4}\% = $	$\frac{3}{400}$	
6.	$2\frac{1}{3}\%$ = _	$\frac{7}{300}$	
7.	$6\frac{4}{5}\% = -$	$\frac{17}{250}$	
8.	$11\frac{1}{4}\%$ =	<u>9</u> 80	
Exer	cise 1.4.2	Convert each of these decimals	s to a percentage.
1.	1.2 =	120%	
2.	1.24 = _	124%	
3.	3. 3 =	$333\frac{1}{3}\%$	
4.	8.Ġ =	$867\% \ or \ 866\frac{2}{3}$	
5.	2.125 =	212.5%	
Exer	cise 1.4.3	Convert each the following per	centages to a decimal.
3.	$126\frac{2}{3}\% =$	1.2Ġ	
4.	475% =	4.75	
5.	225% =	2.25	

Exercise 1.4.4 Simplify the following expressions:

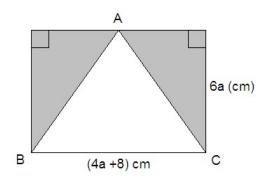
Exercise 1.4.5

1. Emma has 3m pencils. Alice has 4 times as many pencils as Emma. How many pencils do they have altogether?

Solution: $3m + 4 \times 3m = 3m + 12m = 15m$ pencils.

2. Addison went shopping with \$p. She brought 5 T-shirts which cost \$q each. How much money had she left?

Solution: $(p-5q)$.


3. Nicholas earns \$61.60 for working 8 hours. How much would Nicholas earn if he worked 35 hours at this wage rate?

Solution:	$61.60 \div 8 \times 35 = 269.50$	
-----------	-----------------------------------	--

4. 15 years ago, Bob was 8m years old. How old was Bob 3m years ago?

Solution: 8m + 15 - 3m = 5m + 15 years.

Exercise 1.4.6 The $\triangle ABC$ is a isosceles triangle in the figure shown below. Find the area of the shaded region in terms of a. Express your answer in its simplest form.

Solution:	$A = \frac{1}{2} \times 6a \times (4a + 8) = 12a^2 + 24a cm^2.$
-----------	--

Exercise 1.4.7 Adam has \$x. Bob has \$12y more than Adam. Cathy has \$4z less than Bob.

1. Find Cathy's money in terms of x, y and z.

<i>Solution:</i> $\$(x + 12y - 4z)$	
-------------------------------------	--

2. Find the total amount of money they have altogether in terms of x, y and z.

Solution:	\$(3x+24y-4z).	

3. If x = 100, y = 4 and z = 6, who has the most?

Г

Solution:	Adam has \$100
	Bob has $100 + 12 \times 4 = \$148 \implies Bob$ has the most Cathy has $148 - 4 \times 6 = \$124$

4. Find the difference between the most amount and the least.

Solution:	148 - 100 = 48	
-----------	----------------	--