Year 9 Term 1 Homework Worked Solutions

Student Name: \quad Grade:	
Date: -	
	Score:

Table of contents

10 Year 9 Term 1 Week 10 Homework Solutions 1
10.1 Chapter Review 1
10.1.1 Significant figures 1
10.1.2 Recurring decimals 2
10.1.3 Rates 2
10.1.4 Algebra 3
10.1.5 Consumer arithmetic 5
10.1.6 Equations, inequations and formulae 6
10.2 Maths challenge 7
10.3 Miscellaneous exercise 8
10.4 Practical Exam Questions 9

This edition was printed on March 15, 2022.
Camera ready copy was prepared with the $\mathbf{E T}_{\mathbf{E}} \mathbf{X} \mathbf{2 e}$ typesetting system.
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

10 Year 9 Term 1 Week 10 Homework Solutions

10.1 Chapter Review

10.1.1 Significant figures

A significant figure is a number that is correct within some stated degree of accuracy. The rule for significant figures are:

- All non-zero digits are significant.
- Zeros between non-zero digits are significant.
- Zeros at the end of a decimal are significant.
- Zeros before the first non-zero digit in a decimal are not significant.
- Zeros after the last non-zero digit in a whole number may or may not be significant.

Exercise 10.1.1 Round off $\mathbf{7 6 . 5 4 3}$ correct to:

1. 2 significant figures [Answer: 77].
2. 3 significant figures [Answer: 76.5].
3. 4 significant figures [Answer: 76.54].

Exercise 10.1.2 State the number of significant figures in each of the following:

1. 8004 [Answer: 4 significant figures].
2. 0.36 [Answer: 2 significant figures].
3. 18.020 [Answer: 5 significant figures].
4. $0.01201200 \quad$ [Answer: 7 significant figures].

Exercise 10.1.3 Round off each of the following correct to 3 significant figures:

1. 8280 [Answer: 8280].
2. 364005 [Answer: 364,000$]$.
3. 0.25949 [Answer: 0.259].
4. 194.62 [Answer: 195].

10.1.2 Recurring decimals

Exercise 10.1.4 Convert each of these recurring decimals to a fraction or a mixed numeral, in simplest form:

1. $0 . \dot{2} \overline{7}$

$$
\text { Solution: } \quad \begin{aligned}
\quad \text { Let } x & =0 . \dot{2} \dot{\overline{7}} \Rightarrow 100 x=27 . \dot{2} \dot{7} \Rightarrow 100 x-x=27 . \dot{2} \dot{7}-0 . \dot{2} \dot{7} \\
\quad 99 x & =27 \Rightarrow \therefore x=\frac{27}{99}=\frac{3}{11} .
\end{aligned}
$$

2. $0.41 \dot{6}$

$$
\text { Solution: } \begin{aligned}
\text { Let } x & =0.41 \dot{6} \Rightarrow 1000 x=416 . \dot{6} \text { and } 100 x=41 . \dot{6} \\
1000 x-100 x & =416 . \dot{6}-41 . \dot{6} \Rightarrow 900 x=375 \Rightarrow \therefore=\frac{375}{900}=\frac{5}{12} .
\end{aligned}
$$

10.1.3 Rates

- A rate is a comparison of two unlike quantities.
- A rate is a measure of how one quantity is changing with respect to another.
- To be in simplest form, a rate must be expressed as a quantity per one unit of another quantity.

Exercise 10.1.5 Complete the following equivalent rates:

1. $60 \mathrm{~m} / \mathrm{s}=$ [Answer: 216]. km / h
2. $1.5 \mathrm{~m} / \mathrm{min}=$ [Answer: 2.16]. $\mathrm{km} /$ day
3. $25 \mathrm{~mL} / \mathrm{s}=$ [Answer: 90$] . \mathrm{L} / \mathrm{h}$
4. $1.25 \mathrm{t} / \mathrm{h}=[$ Answer: 30,000$] . \mathrm{kg} /$ day

Exercise 10.1.6 Further applications

1. Calculate the daily interest rate on a credit card if the annual rate is 18.5% p.a.
Solution: $\quad \frac{18.5}{365} \times 100 \%=0.0507 \%$ daily.
2. Convert $\$ 734.50 / q u a r t e r ~ t o ~ a n ~ e q u i v a l e n t ~ w e e k l y ~ r a t e . ~$

$$
\text { Solution: } \quad 52 \div 4=13 \text { weeks/quarter } \Rightarrow 734.5 \div 13=\$ 56.50 / \text { week. }
$$

10.1.4 Algebra

Exercise 10.1.7 Find the value of the following expressions if $a=3, b=-4$ and $c=\frac{1}{2}$

1. $a^{2}(c+b) \quad\left[\right.$ Answer: $3^{2}\left(\frac{1}{2}-4\right)=-31 \frac{1}{2}$ or -31.5$]$.
2. $a^{2}+b^{3}+c \quad\left[\right.$ Answer: $3^{2}+(-4)^{3}+\frac{1}{2}=-54.5$ or $\left.-54 \frac{1}{2}\right]$.
3. $\frac{1}{c}-\frac{1}{b} \quad$ [Answer: $\left.2+\frac{1}{4}=2 \frac{1}{4}\right]$.

Exercise 10.1.8 Simplifying the following expressions:

1. $x^{2}+2 x+2 x^{2}+3 x+3 x^{3}-x \quad$ [Answer: $\left.=3 x^{3}+3 x^{2}+4 x\right]$.
2. $(-a b) \times(-b c) \times 2 a b \quad$ [Answer: $\left.=2 a^{2} b^{3} c\right]$.
3. $\frac{1}{4} x \times 4 x^{2} \times(-2 x) \quad\left[\right.$ Answer: $\left.-2 x^{4}\right]$.
4. $9 x y \div 3 x \times 2 y \quad$ [Answer: $\left.6 y^{2}\right]$.
5. $\frac{3 x-x+2 x}{2 \times 2 x} \quad\left[\right.$ Answer: $\left.=\frac{4 x}{4 x}=1\right]$.
6. $\frac{5 a \times 4 b \times 2 c}{10 c \times b \times 8} \quad\left[\right.$ Answer: $\left.\frac{40 a b c}{80 b c}=\frac{a}{2}\right]$.
7. $\frac{3}{2 x}-\frac{1}{3 x}$

Solution: $\quad \frac{3}{2 x}-\frac{1}{3 x}=\frac{3 \times 3}{3 \times 3 x}-\frac{1 \times 2}{3 x \times 2}=\frac{9}{6 x}-\frac{2}{6 x}=\frac{7}{6 x}$.
8. $\frac{x}{3 p}+\frac{3 x}{4 p}$

Solution: $\frac{x}{3 p}+\frac{3 x}{4 p}=\frac{4 x}{12 p}+\frac{9 x}{12 p}=\frac{13 x}{12 p}$.
9. $\frac{2 x}{3 a}+\frac{y}{4 a}$

Solution:

$$
\frac{2 x}{3 a}+\frac{y}{4 a}=\frac{8 x}{12 a}+\frac{3 y}{12 a}=\frac{8 x+3 y}{12 a} .
$$

10. $\frac{2}{x} \times \frac{x}{3} \times \frac{9 x}{4}$
Solution: $\quad \frac{2}{x} \times \frac{x}{3} \times \frac{9 x}{4}=\frac{3 x}{2}$.

Exercise 10.1.9 Simplify each expression by expanding the grouping symbols and then collecting like terms.

1. $5(a+7)-3(a+6)$

$$
\text { Solution: } \quad 5(a+7)-3(a+6)=5 a+35-3 a-18=2 a+17 .
$$

2. $5(b-5)-3(b+3)$

Solution:

$$
5(b-5)-3(b+3)+5 b-25-3 b-9=2 b-34 .
$$

3. $c(c-4)-5(c-4)$

Solution:

$$
c(c-4)-5(c-4)=c^{2}-4 c-5 c+20=c^{2}-9 c+20 .
$$

Exercise 10.1.10 Expand and simplify each of these expressions:

1. $(2 m-n)(2 m+n)$

Solution:

$$
(2 m-n)(2 m+n)=4 m^{2}-n^{2} .
$$

2. $(2 n+m)(n+2 m)$

$$
\text { Solution: } \quad(2 n+m)(n+2 m)=2 n^{2}+4 m n+m n+2 m^{2}=2 m^{2}+5 m n+2 n^{2} .
$$

3. $(3 p+2 q)(2 p+3 q)$

Solution: $\quad(3 p+2 q)(2 p+3 q)=6 p^{2}+0 p q+4 p q+6 q^{2}=6 p^{2}+13 p q+6 q^{2}$.
4. $(2 x+3 y)^{2}$

Solution:

$$
(2 x+3 y)^{2}=4 x^{2}+12 x y+9 y^{2} .
$$

5. $5(x-5)^{2}-4(x-4)^{2}+3(x-3)^{2}$

Solution:

$$
\begin{aligned}
5(x-5)^{2}-4(x-4)^{2}+3(x-3)^{2} & =5\left(x^{2}-10 x+25\right)-4\left(x^{2}-8 x+16\right)+3\left(x^{2}-6 x+9\right) \\
& =5 x^{2}-50 x+125-4 x^{2}+32 x-64+3 x^{2}-18 x+27 \\
& =4 x^{2}-36 x+88
\end{aligned}
$$

10.1.5 Consumer arithmetic

Exercise 10.1.11

1. Due the the economic downturn, the employees at a small financial company have their pay reduced by 8%. Calculate the new annual pay for an employee who previously earned $\$ 920$ per week.
```
Solution: Reduce by }8%\mathrm{ , paid }92%=>920\times92%\times52=$44,012.8
```

2. A real estate agent is paid a commission of 3% on the first $\$ 200,000$ of the value of a property and 2% of the remaining value. Find the total commission on the sale of a house sold for \$585,000.

Solution:

$$
3 \% \times 200,000+2 \% \times 385,000=\$ 13,700
$$

3. Raymond normally earns $\$ 712.50$ for a 38 -hour work. For how many hours would he have work in a week where his total pay is $\$ 825.00$, if all overtime is paid at the one and a half times rate?
```
Solution:
    Hour rate }=712.5\div38=$18.75,=>$18,75\times1.5=$28.125/hour
    $825-$712.50=112.5 => $112.5\div28.125=4 hours.
    the total working hour:}=38+4=42\textrm{hrs}
```

4. Jane purchased a LCD TV with a marked price of $\$ 1500$ at the mid-year sales, where everything in the store was advertised at 15% off. She was also given a further discount of 3% because she paid cash. How much did she pay for the TV?

Solution:

$$
\$ 1500 \times 85 \% \times 97 \%=\$ 1236.75
$$

5. A manufacturer sells an MP3 player to a wholesaler at cost plus 20%. The wholesaler then marks up the price by a further 25% and sells them to a retailer. The retailer then sells the MP3 player for $\$ 42.00$ each, making a profit of 40%. How much would it cost to manufacture 2000 MP3 players?

$$
\text { Solution: } \quad \begin{aligned}
C \times 120 \% \times 125 \% \times 140 \% & =\$ 42.00 \Rightarrow C=\$ 20.00 \\
\text { Total cost }: & =\$ 20 \times 2000=\$ 40,000 .
\end{aligned}
$$

10.1.6 Equations, inequations and formulae

Exercise 10.1.12 solve the following number problems:

1. Two-fifths of a number increased by 5 is 13 . What is the number?

$$
\text { Solution: } \quad \frac{2}{5} \times n+5=13 \Rightarrow 2 N+25=65 \Rightarrow N=20
$$

2. Nine times a number diminished by 27 is 27 . Find the number.

$$
\text { Solution: } \quad 9 N-27=27 \Rightarrow 9 N=54 \Rightarrow N=6 .
$$

3. Three tenths of a number is one more than two fifths of the number. What is the number?

$$
\text { Solution: } \quad \frac{3}{10} N=\frac{2}{5} N+1 \Rightarrow 3 N=4 N+10 \Rightarrow N=-10 .
$$

4. Solve this equation $\frac{x+3}{4 x}=5+\frac{1}{x}$

$$
\text { Solution: } \quad \frac{x+3}{4 x}=\frac{20 x+4}{4 x} x+3=20 x+4 \Rightarrow x=-\frac{1}{19} \text {. }
$$

5. One number is three times more than another number. The sum of the large number and twice the smaller number is 12. Find the numbers.

$$
\text { Solution: } \quad\left\{\begin{array}{l}
A=3 B \\
A+2 B=12
\end{array} \Rightarrow 3 B+2 B=12 \Rightarrow\left\{\begin{array}{l}
A=7 \frac{1}{5} \\
B=2 \frac{2}{5} .
\end{array}\right.\right.
$$

6. The difference of two numbers is 26. The large number is 8 more than ten times the small number. What are the numbers?

Solution:

$$
\left\{\begin{array}{l}
A-B=26 \\
A=10 B+8
\end{array} \quad \Rightarrow 9 B=18 \Rightarrow\left\{\begin{array}{l}
A=28 \\
B=2 .
\end{array}\right.\right.
$$

7. A rocket plus its fuel weighs 5200 kg . After one quarter of fuel is used, the rocket and the remaining fuel weigh 4600 kg . Find the weight of the rocket?

$$
\text { Solution: } \quad 5200-4600=600 \mathrm{~kg}=\frac{1}{4} \text { fuel } \Rightarrow \text { total fuel }=4 \times 600=2400 \mathrm{~kg} .
$$

$$
\therefore \text { The weight of the rocker: }=5200-2400=2800 \mathrm{~kg} .
$$

10.2 Maths challenge

Exercise 10.2.1

1. If x and y are non-negative integers and $3 x+4 y=96$, how many pairs (x, y) are there?
A. 6
B. 8
C. 10
D. 9
E. 12

Solution:

$$
\begin{aligned}
& 9 \text { pairs; } 3 x=96-4 y=4(24-y) \\
& \left\{\begin{array}{l}
x \text { is a multiple of } 4 \text { and } y<24 . \\
y \text { is a mulitple of } 3 \text { and } x<32
\end{array}\right. \\
& \text { so } x=0,4,8,12,16,24,20,28,32, \text { and } y=24,21,18,15,12,8,6,3 \text { and } 0 .
\end{aligned}
$$

2. Tickets to a concert cost $\$ 9$ for an adult and $\$ 6$ for a child. If a total of 120 adults and children attended the concert and $\$ 840$ was collected, What is the difference of the number of children and the number of adults?
A. 40
B. 50
C. 60
D. 70
E. 80

$$
\text { Solution: } \quad \begin{aligned}
& \text { Let number of children be } x \text {, then the adult will be } 120-x . \\
& 9(120-x)+6 x=840 \Rightarrow 1080-9 x+6 x=840 \\
& 1080-3 x=840 \Rightarrow 3 x=1080-840 \\
& \therefore x=80 \Rightarrow \text { Adult }:=40 \Rightarrow \text { difference }=80-40=40 .
\end{aligned}
$$

3. When the digits of a two-digit number, neither digit zero, are reversed the number formed is 36 less than the original number. the sum of the digits of the original number could be:
A. 4
B. 6
C. 15
D. 16
E. 18

Solution:

Let the numbers be a and b,
then $10 a+b-10 b-a=9(a-b)=36$
so the difference between digits is $(a-b)=4$,
thus the number could be 95, 84, 73, 62 and 51.
The digit sums are 14, 12, 10, 8 and 6 .

10.3 Miscellaneous exercise

Exercise 10.3.1 The following currency conversions show the value of 1 Australian dollar (AUD\$1) in USD\$, EURO and NZD\$.

$$
A U D \$ 1=U S D \$ 0.6402 \quad A U D \$ 1=0.5054 \text { EURO } \quad A U D \$ 1=N Z D \$ 1.2733
$$

Use these currency conversions to convert:

1. AUD $\$ 50$ into $U S D \$ \quad$ [Answer: $U S D \$ 32.01]$.
2. AUD $\$ 25$ into EURO [Answer: $\$ 12.635$].
3. USD $\$ 1200$ into NZD $\$ \quad\left[\right.$ Answer: $\frac{1200}{0.6402} \times 1.2733=\$ 2386.69$. $]$.

Exercise 10.3.2 Simplifying the following expressions:

1. $\frac{5 a \times 4 b \times 2 c}{10 c \times b \times 8 c}$

$$
\text { Solution: } \quad \frac{5 a \times 4 b \times 2 c}{10 c \times b \times 8 c}=\frac{40 a b c}{80 b c^{2}}=\frac{a}{2 c} \text {. }
$$

2. $\frac{8}{a} \times \frac{2 a}{15} \div \frac{8}{3}$

Solution:

$$
\frac{8}{a} \times \frac{2 a}{15} \div \frac{8}{3}=\frac{8}{a} \times \frac{2 a}{15} \times \frac{3}{8}=\frac{2}{5}
$$

3. $x(x+y)+y(x+y)$

$$
\text { Solution: } \quad x(x+y)+y(x+y)=x^{2}+x y+x y+y^{2}=x^{2}+2 x y+y^{2} .
$$

4. $a(2 a+b)+b(a+2 b)$

$$
\text { Solution: } \quad a(2 a+b)+b(a+2 b)=2 a^{2}+a b+a b+2 b^{2}=2 a^{2}+2 a b+2 b^{2}
$$

Exercise 10.3.3 Find an expression for the shaded area of the following figure.

Solution: $\quad A=\frac{1}{2} b \times h=\frac{1}{2}(2 x-2)(x+1)=x^{2}-1$.

10.4 Practical Exam Questions

Exercise 10.4.1

1. Solve for $x: \frac{2}{x}-\frac{4}{5 x}=8$.

$$
\begin{array}{ll}
\text { Solution: } \quad & \frac{2}{x}-\frac{4}{5 x}=8 \Rightarrow 20-8=80 x \Rightarrow 80 x=12 \\
\Rightarrow \therefore x=\frac{12}{80}=\frac{3}{20} .
\end{array}
$$

2. Factorise Fully: $3 x-6 y+x^{2}-2 x y$.

$$
\text { Solution: } \quad 3 x-6 y+x^{2}-2 x y=3(x-2 y)+x(x-2 y)=(3+x)(x-2 y) .
$$

3. Simplify $\frac{9 x^{2}-4 y^{2}}{6 x-4 y}$.

$$
\text { Solution: } \quad \begin{aligned}
\frac{9 x^{2}-4 y^{2}}{6 x-4 y} & =\frac{(3 x-2 y)(3 x+2 y)}{2(3 x-2 y)} \\
& =\frac{3 x+2 y}{2} .
\end{aligned}
$$

4. Solve the inequality $\frac{2 x}{3}-1 \leq x+2$.

Solution:

$$
\begin{aligned}
& \frac{2 x}{3}-1 \leq x+2 \Rightarrow-1-2 \leq x-\frac{2 x}{3} \Rightarrow-3 \leq \frac{x}{3} \\
& \Rightarrow \therefore-9 \leq x \text { or } x \geq-9
\end{aligned}
$$

5. Solve for the x : $\frac{2 x+5}{2}-\frac{2}{3}=\frac{2 x-1}{4}$.

Solution:

$$
\begin{aligned}
\frac{2 x+5}{2}-\frac{2}{3}=\frac{2 x-1}{4} \Rightarrow 6(2 x+5)-2 \times 4 & =3(2 x-1) \\
12 x+30-8 & =6 x-3 \\
12 x-6 x & =-3-22 \\
6 x & =-25 \\
\therefore x & =-4 \frac{1}{6} .
\end{aligned}
$$

Exercise 10.4.2

1. Simplify: $\frac{2}{x^{2}-1}-\frac{3}{x^{2}-x}$.

$$
\text { Solution: } \quad \begin{aligned}
\frac{2}{x^{2}-1}-\frac{3}{x^{2}-x} & =\frac{2}{(x-1)(x+1)}-\frac{3}{x(x-1)} \\
& =\frac{2 x}{x(x-1)(x+1)}-\frac{3(x+1)}{x(x-1)(x+1)} \\
& =\frac{2 x-3 x-3}{x(x-1)(x+1)} \\
& =\frac{-x-3}{x(x-1)(x+1)} .
\end{aligned}
$$

2. Simplify $\frac{x^{2}+8 x+15}{25-5 x} \div \frac{x+3}{x^{2}-5 x}$.

$$
\text { Solution: } \quad \begin{aligned}
\frac{x^{2}+8 x+15}{25-5 x} \div \frac{x+3}{x^{2}-5 x} & =\frac{(x+3)(x+5)}{5(5-x)} \times \frac{x(x-5)}{x+3} \\
& =\frac{(x+3)(x+5)}{5(5-x)} \times \frac{-x(5-x)}{x+3} \\
& =\frac{-x(x+5)}{5} .
\end{aligned}
$$

3. Factorise $x^{4}-256$.

$$
\text { Solution: } \quad x^{4}-256=\left(x^{2}-4^{2}\right)\left(x^{2}+4^{2}\right)=(x-4)\left((x+4)\left(x^{2}+16\right) .\right.
$$

4. Simplify $\frac{(4 x-y)^{3}-4 x+y}{4 x-y}$.

$$
\text { Solution: } \quad \begin{aligned}
\frac{(4 x-y)^{3}-4 x+y}{4 x-y} & =\frac{(4 x-y)\left[(4 x-y)^{2}-1\right]}{4 x-y} \\
& =(4 x-y)^{2}-1 \\
& =(4 x-y-1)(4 x-y+1) .
\end{aligned}
$$

5. Simplify $\frac{x^{2}+x-2}{x+2} \div \frac{x^{2}-4 x+3}{x^{2}-3 x}$.

Solution:

$$
\begin{aligned}
\frac{x^{2}+x-2}{x+2} \div \frac{x^{2}-4 x+3}{x^{2}-3 x} & =\frac{x^{2}+x-2}{x+2} \times \frac{x^{2}-3 x}{x^{2}-4 x+3} \\
& =\frac{(x+2)(x-1)}{x+2} \times \frac{x(x-3)}{(x-1)(x-3)} \\
& =x .
\end{aligned}
$$

Exercise 10.4.3

1. Find the subject of Q for the formula $4 P=5 T+2 Q^{2}$.

$$
\begin{aligned}
& \text { Solution: } \quad \begin{aligned}
4 P=5 T+2 Q^{2} \Rightarrow 2 Q^{2} & =4 P-5 T \\
Q^{2} & =\frac{4 P-5 T}{2} \\
Q & =\sqrt{\frac{4 P-5 T}{2}} .
\end{aligned}
\end{aligned}
$$

2. Make the subject of T for the formula $B=2 \pi\left(R+\frac{T}{2}\right)$.

$$
\begin{aligned}
& \text { Solution: } \begin{aligned}
B=2 \pi\left(R+\frac{T}{2}\right) \Rightarrow R+\frac{T}{2} & =\frac{R}{2 \pi} \\
\frac{T}{2} & =\frac{B}{2 \pi}-R \\
T & =2 \times\left(\frac{B}{2}-R\right) \\
\therefore T & =\frac{B}{\pi}-2 R .
\end{aligned}
\end{aligned}
$$

3. If $w=2 y^{3}-1$, what is the value of y then $w=13$?

Solution:

$$
\begin{aligned}
& \text { Given that } w=2 y^{3}-1 \Rightarrow 2 y^{3}=w+1 \\
& \therefore y=\sqrt[3]{\frac{w+1}{2}}=\sqrt[3]{\frac{13+1}{2}}=\sqrt[3]{7}
\end{aligned}
$$

4. Rearrange the formula for te area of a annulus, $A=\pi\left(R^{2}-r^{2}\right)$, to make R the subject.

$$
\text { Solution: } \quad \begin{aligned}
\text { Given that } A & =\pi\left(R^{2}-r^{2}\right) \Rightarrow \frac{A}{\pi}=R^{2}-r^{2} \\
R^{2} & =\frac{A}{\pi}+r^{2} \Rightarrow \therefore R=\sqrt{\frac{A}{\pi}+r^{2}} .
\end{aligned}
$$

5. If $d=6 t^{2}$, find a possible value of t when $d=2400$.

Solution:

$$
\begin{aligned}
& \text { Given that } d=6 t^{2} \Rightarrow t^{2}=\frac{d}{6} \\
& \therefore t=\sqrt{\frac{d}{6}}=\sqrt{\frac{2400}{6}}=20 .
\end{aligned}
$$

