Year 9 Term 1 Homework

Student Name: _ Grade:	
Date:	
	Score:

Table of contents

1 Year 9 Term 1 Week 1 Homework 1
1.1 Rational Number 1
1.1.1 Significant figures 1
1.1.2 Estimation 3
1.1.3 Recurring decimals 4
1.1.4 Rates 6
1.1.5 Solving problem with rates 8
1.2 Miscellaneous Exercises 9

This edition was printed on March 15, 2022 with Worked Solutions.
Camera ready copy was prepared with the $\mathbf{I A}_{\mathbf{E}} \mathbf{X} \mathbf{2 e}$ typesetting system.
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

1 Year 9 Term 1 Week 1 Homework

1.1 Rational Number

A rational number is a number that can be written in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

1.1.1 Significant figures

A significant figure is a number that is correct within some stated degree of accuracy. The rule for significant figures are:

- All non-zero digits are significant.
- Zeros between non-zero digits are significant.
- Zeros at the end of a decimal are significant.
- Zeros before the first non-zero digit in a decimal are not significant.
- Zeros after the last non-zero digit in a whole number may or may not be significant.

Example 1.1.1 State the number of significant figures in each of these numbers:

1. 2.008

Solution: In 2.008, the two non-zero digits are significant and two zeros between these digits are also significant. \therefore the number has four significant figures.
2. 102.50

Solution: In 102.50, the three non-zero digits are significant and both the zero in between and at the end of the decimal are significant. \therefore The number has five significant figures.
3. 0.00125

Solution: In 0.00125, the three non-zero digits are significant; however, the three zeros at the beginning of the decimal are not significant. \therefore the number has only three significant figures.
4. 9000

Solution: In 9000, the non-zero digit is significant. Either some, all or none of the final zeros could possibly be significant. If we knew that the number had been rounded off correct to:
(a) 1 significant figure, then only the 9 would be significant.
(b) 2 significant figures, then only the 9 and the first zero would be significant.
(c) 3 significant figures, then only the 9 and the first two zeros would be significant.
(d) 4 significant figures, then all the digits would be significant.

Exercise 1.1.1 Round off 34.535 correct to:

1. I significant figure \qquad
2. 2 significant figures \qquad
3. 3 significant figures \qquad
4. 4 significant figures \qquad

Exercise 1.1.2 State the number of significant figures in each of the following:

1. 5002 \qquad
2. 0.48 \qquad
3. 3.40 \qquad
4. 12.0050 \qquad
5. 0.012003400 \qquad

Exercise 1.1.3 Round off each of the following correct to 1 significant figure:

1. 325 \qquad
2. 280 \qquad
3. 2180 \qquad
4. 12.56 \qquad
5. 99.45 \qquad

Exercise 1.1.4 Round off each of the following correct to $\mathbf{2}$ significant figures:

1. 8580 \qquad
2. 123003 \qquad
3. 8028 \qquad
4. 0.25349 \qquad
5. 194.95 \qquad

Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

1.1.2 Estimation

- An estimate is an approximate answer that is worked out logically.
- It needs to be of the same order of magnitude.

Exercise 1.1.5 Estimate the answer, as an integer to each of these:

1. $9.6+19.3+12.2$ \qquad
2. $95.5-27.3+15.048$ \qquad
3. $12.2 \times 3.75 \times 5.4$ \qquad
4. $126.6 \div 9.81$ \qquad
5. $53.5 \div 6.12 \times 8.045$ \qquad

Exercise 1.1.6 Further applications

1. Evaluate $\sqrt{4}$ and $\sqrt{9}$, find estimates for the following, correct to 1 decimal place.
(a) $\sqrt{5}$ \qquad
(b) $\sqrt{8}$
2. Evaluate $\sqrt{121}$ and $\sqrt{144}$. Hence, find estimates for the following, correct to 1 decimal place.
(a) $\sqrt{125}$
(b) $\sqrt{145}$ \qquad
3. John decided to re-carpet his lounge room using carpet squares of side length 40 cm . The lounge room is rectangular in shape and measure 4.8 m by 5.6 m .
(a) Estimate the area of the room in square metres.
(b) How many carpet squares are needed to cover an area of $2 \mathrm{~m}^{2}$.
\qquad
(c) Estimate the number of carpet squares that are needed to cover the entire lounge room floor.
\qquad
(d) If the carpet squares are sold in packs of 50 at $\$ 280$ per pack, estimate the total cost of the re-carpeting.

1.1.3 Recurring decimals

- A recurring decimal has an infinite number of decimal places, with one or more of the digits repeating themselves indefinitely.
- Recurring decimals are written with a dot above the first and the last digits in the repeating sequence.
- Every recurring decimal can be expressed as a fraction, so recurring decimals are rational numbers.

Example 1.1.2

1. $0.333333 \ldots=0 . \dot{3}$
2. $0.166666 \ldots=0.1 \dot{6}$
3. $0.616161 \ldots=0 . \dot{6} \dot{1}$
4. $1.329329 \ldots=1 . \dot{3} 2 \dot{9}$

- To convert a fraction to a recurring decimal divide the numerator by the denominator.
- To convert a recurring decimal to a fraction:
- let the decimal be x
- multiply both sides by the smallest power of 10 so that the recurring part of the decimal becomes a whole number
- subtract the first equation from the second and solve the resulting equation.

Example 1.1.3 Convert each of these recurring decimals to a fraction in its simplest form:

1. $0 . \dot{6}$

Solution: let $x=0 . \dot{6} \ldots$. (1)
$\therefore 10 x=6 . \dot{6}$
subtract (1) from (2) we have $9 x=6$.
$\therefore x=\frac{6}{9}=\frac{2}{3}$
2. $0 . \dot{1} 2 \dot{5}$

Solution: let $x=0 . \dot{1} 2 \dot{5}$ \qquad
$\therefore 1000 x=125.125$
subtract (1) from (2) we have $999 x=125$

$$
\therefore x=\frac{125}{999}
$$

Exercise 1.1.7 Write each of these as a recurring decimal:

1. $0.6444 \ldots$ \qquad
2. 0.31818 ... \qquad
3. $0.3555 \ldots$ \qquad
4. 0.919191 ... \qquad
5. 0.484848 ... \qquad
6. 0.030303 ... \qquad
7. 0.029029 ... \qquad
8. 13.95555 ... \qquad

Exercise 1.1.8 Convert each of these recurring decimals to a fraction or a mixed numeral, in simplest form:

1. $0.3 \dot{5}$
\qquad
\qquad
\qquad
2. $0.4 \dot{8}$
\qquad
\qquad
\qquad
3. $0.14 \dot{6}$
\qquad
\qquad
\qquad
4. $3.41 \dot{6}$
\qquad
\qquad
\qquad

Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

1.1.4 Rates

- A rate is a comparison of two unlike quantities.
- A rate is a measure of how one quantity is changing with respect to another.
- To be in simplest form, a rate must be expressed as a quantity per one unit of another quantity.

Example 1.1.4 Express each of the following statements as a rate in simplest form.

1. 210 km in 3 hours $=70 \mathrm{~km} / \mathrm{h}$.
2. 36 L in $9 \mathrm{~min}=4 \mathrm{~L} / \mathrm{min}$.
3. $\$ 180$ in 4 hours $=\$ 45 / h$.

Exercise 1.1.9 Express each of the the following statements as a rate in simplest form:

1. 45 m in 3 seconds \qquad
2. 260 km in 4 hours \qquad
3. $\$ 18$ for 8 kg \qquad
4. 72 kL in 1.5 hours \qquad
5. 26 km on 25 L \qquad
6. 240 heart beats in $2 \frac{1}{2}$ min \qquad

Exercise 1.1.10 Complete the following equivalent rates:

1. $8 \mathrm{~cm} / \mathrm{s}=$ \qquad cm/min
2. $15 \mathrm{~g} / \mathrm{min}=$ \qquad g / h
3. $75 \mathrm{~cm} / \mathrm{s}=$ \qquad $m / m i n$
4. $180 \mathrm{~kg} / \mathrm{h}=$ \qquad t/day
5. $142 \mathrm{~m} / \mathrm{min}=$ \qquad km / h
6. $72 \mathrm{~km} / \mathrm{h}=$ \qquad m / s
7. $2.5 \mathrm{\phi} / \mathrm{mm}=\$$ \qquad /m
8. $2.8 \mathrm{~m} / \mathrm{min}=$ \qquad km/day

Exercise 1.1.11 Complete the following equivalent rates:

1. $25 \mathrm{~m} / \mathrm{s}=$ \qquad km / h
2. $8 \mathrm{~mm} / \mathrm{min}=$ \qquad $m / d a y$
3. $0.5 \mathrm{~m} / \mathrm{min}=$ \qquad km/day
4. $11 \mathrm{~m} / \mathrm{mL}=$ \qquad $k m / L$
5. $125 \mathrm{~m} / \mathrm{min}=$ \qquad km / h
6. $25 \mathrm{~mL} / \mathrm{s}=$ \qquad L/h
7. $720 \mathrm{~m} / \mathrm{min}=$ \qquad m / s
8. $14.6 t / d a y=$ \qquad kg/day

Exercise 1.1.12 Convert the following monthly interest rates to annual rates:

1. 0.65% per month \qquad
2. 0.8% per month \qquad
3. 1.25% per month \qquad

Exercise 1.1.13 Convert the following annual interest rates to monthly rates:

1. 8% p.a. \qquad
2. 18% p.a. \qquad
3. 4.8% p.a. \qquad

Exercise 1.1.14 Further applications

1. Calculate the daily interest rate on a credit card if the annual rate is 17.8% p.a.
2. Convert $\$ 540 /$ week to an equivalent monthly rate.
3. Convert $\$ 1014 /$ month to an equivalent fortnightly rate.
4. Convert $\$ 461.50 / q u a r t e r ~ t o ~ a n ~ e q u i v a l e n t ~ w e e k l y ~ r a t e . ~$

1.1.5 Solving problem with rates

Exercise 1.1.15

1. George drove 15 km in 10 minutes. At the same speed, how far does he drive in 2 hours?
\qquad
\qquad
2. If it takes 3 hours to remove $72 t$ of sugar from a silo, how long it would take to remove $30 t$?
\qquad
\qquad
3. A long distance runner completes a marathon of 42.2 kilometres in 2 hours 15 minutes. Calculate his average speed in km / h and m / s, correct to 2 decimal places.
\qquad
\qquad
4. The following currency conversions show the value of 1 Australian dollar (A\$1) in US\$, euro and NZ\$.

$$
\begin{array}{l|l|l|}
\hline A \$ 1=U S \$ 0.6925 & A \$ 1=0.5226 \text { euro } & A \$ 1=N Z \$ 1.2171 \\
\hline
\end{array}
$$

Use these currency conversions to convert:
(a) A\$30 into US $\$$
(b) $A \$ 50$ in euro \qquad
(c) $A \$ 500$ into $N Z \$$ \qquad
5. Use the unitary method to answer the following questions:
(a) David paid $\$ 4.95$ for 3 kg of apples. How much would he paid for 8 kg ?
\qquad
\qquad
(b) In a walking race, Peter took 20 minutes to walk 4 km . How long would it take him to walk 15 km ?
\qquad
\qquad
(c) If chicken is being sold for $\$ 6.80$ per kilogram, find the cost of purchasing 450 grams of chicken.
\qquad
\qquad

1.2 Miscellaneous Exercises

Exercise 1.2.1 Round off the following correct to $\mathbf{3}$ significant figures:

1. 99.38 \qquad
2. 194.63 \qquad
3. 499.682 \qquad

Exercise 1.2.2 Convert each of these recurring decimals to a fraction or mixed numeral, in simplest form:

1. $0.7 \dot{3}$
\qquad
\qquad
2. $1 . \dot{6} \dot{0}$
\qquad
\qquad

Exercise 1.2.3 Complete the following equivalent rates:

1. $25 \nless / \mathrm{cm}^{2}=\$$ \qquad $/ m^{2}$
2. $1.5 \mathrm{~g} / \mathrm{cm}^{3}=$ \qquad t / m^{3}
3. $160 \mathrm{~mL} / \mathrm{m}^{2}=$ \qquad $L / k m^{2}$
4. $\$ 120 / \mathrm{L}=$ \qquad $4 / \mathrm{cm}^{3}$

Exercise 1.2.4 Further applications

1. At the 1896 Olympic Games, Australia's Edwin Flack won a gold medal in the 800 m in a time of 2 minutes 11 seconds.
(a) Find the average speed in m / s, correct to 1 decimal place.
\qquad
\qquad
(b) Express this speed in km / h. \qquad
2. On a property sold for $\$ 600,000$, a real estate agent receives a commission of $\$ 12,000$. At what rate is the commission calculated?
\qquad
\qquad
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

Exercise 1.2.5 Simplify the following:

1. $\frac{(4 x-y)^{3}+4 x-y}{4 x-y}$
\qquad
\qquad
\qquad
\qquad
2. $\frac{x^{2}+x-2}{x+2} \times \frac{x^{2}-3 x}{x^{2}-4 x+3}$
\qquad
\qquad
\qquad
\qquad
3. $\frac{3}{y^{2}+2 y-8}-\frac{2}{y^{2}+y-6}$
\qquad
\qquad
\qquad
\qquad
4. $\frac{9 x^{2}-4 y^{2}}{6 x-4 y}$
\qquad
\qquad
\qquad
\qquad
5. $\frac{2 x^{2}-18}{3 x^{2}+9 x}$
\qquad
\qquad
\qquad
\qquad

Exercise 1.2.6 Factorise the following:

1. $3 x^{2}-x-4$
\qquad
\qquad
\qquad
2. $y^{4}-256$
\qquad
\qquad
\qquad
3. $x^{2}-y^{2}-x+y$
\qquad
\qquad
\qquad
4. $3 x-6 y+x^{2}-2 x y$
\qquad
\qquad
\qquad
5. $2 x+y^{2}+2 y+x y$
\qquad
\qquad
\qquad
6. $6 y^{2}-13 y-5$
\qquad
\qquad
\qquad
