## Year 9 Term 1 Homework Worked Solutions

| Student Name: $\quad$ Grade: |  |
| :--- | :--- |
| Date: |  |
|  | Score: |

## Table of contents

1 Year 9 Term 1 Week 1 Homework Worked Solutions ..... 1
1.1 Rational Number ..... 1
1.1.1 Significant figures ..... 1
1.1.2 Estimation ..... 3
1.1.3 Recurring decimals ..... 4
1.1.4 Rates ..... 6
1.1.5 Solving problem with rates ..... 8
1.2 Miscellaneous Exercises ..... 9

This edition was printed on March 15, 2022.
Camera ready copy was prepared with the $\mathbf{I A}_{\mathbf{E}} \mathbf{X} \mathbf{2 e}$ typesetting system.
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

## 1 Year 9 Term 1 Week 1 Homework Worked Solutions

### 1.1 Rational Number

A rational number is a number that can be written in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

### 1.1.1 Significant figures

A significant figure is a number that is correct within some stated degree of accuracy. The rule for significant figures are:

- All non-zero digits are significant.
- Zeros between non-zero digits are significant.
- Zeros at the end of a decimal are significant.
- Zeros before the first non-zero digit in a decimal are not significant.
- Zeros after the last non-zero digit in a whole number may or may not be significant.


## Example 1.1.1 State the number of significant figures in each of these numbers:

## 1. 2.008

Solution: In 2.008, the two non-zero digits are significant and two zeros between these digits are also significant. $\therefore$ the number has four significant figures.
2. 102.50

Solution: In 102.50, the three non-zero digits are significant and both the zero in between and at the end of the decimal are significant. $\therefore$ The number has five significant figures.
3. 0.00125

Solution: In 0.00125, the three non-zero digits are significant; however, the three zeros at the beginning of the decimal are not significant. $\therefore$ the number has only three significant figures.
4. 9000

Solution: In 9000, the non-zero digit is significant. Either some, all or none of the final zeros could possibly be significant. If we knew that the number had been rounded off correct to:
(a) 1 significant figure, then only the 9 would be significant.
(b) 2 significant figures, then only the 9 and the first zero would be significant.
(c) 3 significant figures, then only the 9 and the first two zeros would be significant.
(d) 4 significant figures, then all the digits would be significant.

Exercise 1.1.1 Round off 34.535 correct to:

1. 1 significant figure $\qquad$ 30
2. 2 significant figures $\qquad$
3. 3 significant figures $\qquad$ 34.5
4. 4 significant figures $\qquad$ 34.54

Exercise 1.1.2 State the number of significant figures in each of the following:

1. 5002 4 significant figures
2. $0.48 \quad 2$ significant figures
3. 3.40 $\qquad$
4. 12.0050 $\qquad$ 6 significant figures
5. 0.012003400 $\qquad$ 8 significant figures

Exercise 1.1.3 Round off each of the following correct to 1 significant figure:

1. 325 300
2. 280 300
3. 2180 $\qquad$
4. 12.56 $\qquad$
5. 99.45 $\qquad$

Exercise 1.1.4 Round off each of the following correct to 2 significant figures:

1. 8580 8,600
2. 123003 $\qquad$
3. 8028 $\qquad$ 8,000
4. 0.25349 $\qquad$
5. 194.95 190

### 1.1.2 Estimation

- An estimate is an approximate answer that is worked out logically.
- It needs to be of the same order of magnitude.


## Exercise 1.1.5 Estimate the answer, as an integer to each of these:

1. $9.6+19.3+12.2 \approx 40 \sim 41$
2. $95.5-27.3+15.048 \approx 85$
3. $12.2 \times 3.75 \times 5.4 \approx 200 \sim 240$
4. $126.6 \div 9.81 \approx 12 \sim 13$
5. $53.5 \div 6.12 \times 8.045 \approx 70 \sim 75$

## Exercise 1.1.6 Further applications

1. Evaluate $\sqrt{4}$ and $\sqrt{9}$, find estimates for the following, correct to 1 decimal place.
(a) $\sqrt{5} \approx 2.2 \sim 2.3$
(b) $\sqrt{8} \approx 2.8 \sim 2.9$
2. Evaluate $\sqrt{121}$ and $\sqrt{144}$. Hence, find estimates for the following, correct to 1 decimal place.
(a) $\sqrt{125} \approx 11.1 \sim 11.2$
(b) $\sqrt{145} \approx 12 \sim 12.1$
3. John decided to re-carpet his lounge room using carpet squares of side length 40 cm . The lounge room is rectangular in shape and measure 4.8 m by 5.6 m .
(a) Estimate the area of the room in square metres.
```
\(27 m^{2} \sim 30 m^{2}\)
```

(b) How many carpet squares are needed to cover an area of $2 \mathrm{~m}^{2}$.
$\qquad$
(c) Estimate the number of carpet squares that are needed to cover the entire lounge room floor.
$\qquad$
(d) If the carpet squares are sold in packs of 50 at $\$ 280$ per pack, estimate the total cost of the re-carpeting.
$\qquad$

### 1.1.3 Recurring decimals

- A recurring decimal has an infinite number of decimal places, with one or more of the digits repeating themselves indefinitely.
- Recurring decimals are written with a dot above the first and the last digits in the repeating sequence.
- Every recurring decimal can be expressed as a fraction, so recurring decimals are rational numbers.


## Example 1.1.2

1. $0.333333 \ldots=0 . \dot{3}$
2. $0.166666 \ldots=0.1 \dot{6}$
3. $0.616161 \ldots=0 . \dot{6} \dot{1}$
4. $1.329329 \ldots=1 . \dot{3} 2 \dot{9}$

- To convert a fraction to a recurring decimal divide the numerator by the denominator.
- To convert a recurring decimal to a fraction:
- let the decimal be x
- multiply both sides by the smallest power of 10 so that the recurring part of the decimal becomes a whole number
- subtract the first equation from the second and solve the resulting equation.


## Example 1.1.3 Convert each of these recurring decimals to a fraction in its simplest form:

1. $0 . \dot{6}$

Solution: let $x=0 . \dot{6} \ldots$. (1)

$$
\begin{equation*}
\therefore 10 x=6 . \dot{6} \text {. } \tag{2}
\end{equation*}
$$

subtract (1) from (2) we have $9 x=6$.

$$
\therefore x=\frac{6}{9}=\frac{2}{3}
$$

2. $0.12 \dot{5}$

Solution: let $x=0 . \dot{1} 2 \dot{5}$ $\qquad$
$\therefore 1000 x=125.125$
subtract (1) from (2) we have $999 x=125$

$$
\therefore x=\frac{125}{999}
$$

Exercise 1.1.7 Write each of these as a recurring decimal:

1. 0.6444 .. $\qquad$
2. 0.31818 ... $\qquad$ $=0.3 \mathrm{i} \dot{8}$
3. 0.3555 $\qquad$
4. $0.919191 \ldots=0.9 \dot{1}$
5. 0.484848 . $\qquad$
6. $0.030303 \ldots=0.0 \dot{0} \dot{3}$
7. $0.029029 \ldots=0.02 \dot{9}$
8. $13.95555 \ldots=13.95$

Exercise 1.1.8 Convert each of these recurring decimals to a fraction or a mixed numeral, in simplest form:

1. $0 . \dot{3} \dot{5}$

Solution:

$$
\begin{aligned}
& \text { let } x=0 . \dot{3} \dot{5} \Rightarrow 100 x=35 \cdot \dot{3} \dot{5} \Rightarrow 100 x-x=35 \\
& \therefore 99 x=35 \Rightarrow x=\frac{35}{99} .
\end{aligned}
$$

2. $0.4 \dot{8}$

Solution:

$$
\begin{aligned}
& \text { let } x=0.4 \dot{8}, 10 x=4 . \dot{8}, 100 x=48 . \dot{8} \Rightarrow 100 x-10 x=48 . \dot{8}-4 . \dot{8}=44 \\
& \therefore 90 x=44 \Rightarrow x=\frac{44}{90}=\frac{22}{45}
\end{aligned}
$$

3. $0.14 \dot{6}$

$$
\text { Solution: } \quad \begin{aligned}
& \text { Let } x=0 . \dot{1} 4 \dot{6} \Rightarrow 1000 x=146 . \dot{1} 4 \dot{6} \\
& 1000 x-x=146 \Rightarrow x=\frac{146}{999} .
\end{aligned}
$$

4. $3.41 \dot{6}$

$$
\text { Solution: } \quad \begin{aligned}
& \text { Let } x=3.41 \dot{6} \Rightarrow 100 x=341 . \dot{6} \Rightarrow 1000 x=3416 . \dot{6} \\
& 1000 x-100 x=3416 . \dot{6}-341 . \dot{6} \Rightarrow x=\frac{3075}{900}=3 \frac{5}{12} .
\end{aligned}
$$

### 1.1.4 Rates

- A rate is a comparison of two unlike quantities.
- A rate is a measure of how one quantity is changing with respect to another.
- To be in simplest form, a rate must be expressed as a quantity per one unit of another quantity.


## Example 1.1.4 Express each of the following statements as a rate in simplest form.

1. 210 km in 3 hours $=70 \mathrm{~km} / \mathrm{h}$.
2. 36 L in $9 \mathrm{~min}=4 \mathrm{~L} / \mathrm{min}$.
3. $\$ 180$ in 4 hours $=\$ 45 / h$.

## Exercise 1.1.9 Express each of the the following statements as a rate in simplest form:

1. 45 m in 3 seconds $\qquad$ $15 \mathrm{~m} / \mathrm{s}$
2. 260 km in 4 hours $\qquad$ 65 km/h
3. $\$ 18$ for 8 kg $\qquad$ $\$ 2.25 / \mathrm{kg}$
4. 72 kL in 1.5 hours $\qquad$ 48 kL/h
5. 26 km on $25 \mathrm{~L} \quad 1.04 \mathrm{~km} / \mathrm{L}$, or $1040 \mathrm{~m} / \mathrm{L}$
6. 240 heart beats in $2 \frac{1}{2}$ min 96 beats/min

## Exercise 1.1.10 Complete the following equivalent rates:

1. $8 \mathrm{~cm} / \mathrm{s}=$ $\qquad$ cm/min
2. $15 \mathrm{~g} / \mathrm{min}=$ $\qquad$ 900 $\qquad$ $g / h$
3. $75 \mathrm{~cm} / \mathrm{s}=$ $\qquad$ $m / m i n$
4. $180 \mathrm{~kg} / \mathrm{h}=$ $\qquad$ 4.32 $\qquad$ t/day
5. $142 \mathrm{~m} / \mathrm{min}=$ $\qquad$ 8.52 $\qquad$ km/h
6. $72 \mathrm{~km} / \mathrm{h}=$ $\qquad$ 20 $\mathrm{m} / \mathrm{s}$
7. $2.5 \mathrm{\phi} / \mathrm{mm}=\$$ $\qquad$ 25 /m
8. $2.8 \mathrm{~m} / \mathrm{min}=$ $\qquad$ 4.032 $\qquad$ km/day

## Exercise 1.1.11 Complete the following equivalent rates:

1. $25 \mathrm{~m} / \mathrm{s}=$ $\qquad$ $\mathrm{km} / \mathrm{h}$
2. $8 \mathrm{~mm} / \mathrm{min}=$ $\qquad$ 11.52 $\qquad$ $m / d a y$
3. $0.5 \mathrm{~m} / \mathrm{min}=$ $\qquad$ 0.72 $\qquad$ km/day
4. $11 \mathrm{~m} / \mathrm{mL}=$ $\qquad$ 11 $k m / L$
5. $125 \mathrm{~m} / \mathrm{min}=$ $\qquad$ 7.5 $\mathrm{km} / \mathrm{h}$
6. $25 \mathrm{~mL} / \mathrm{s}=$ $\qquad$ 90 L/h
7. $720 \mathrm{~m} / \mathrm{min}=$ $\qquad$ $\mathrm{m} / \mathrm{s}$
8. $14.6 t / d a y=$ $\qquad$ 14600 $\qquad$ $k g / d a y$

Exercise 1.1.12 Convert the following monthly interest rates to annual rates:

1. $0.65 \%$ per month $\quad 7.8 \%$ p.a.
2. $0.8 \%$ per month $\quad 9.6 \%$ p.a.
3. $1.25 \%$ per month $\qquad$ 15\% р.а.

## Exercise 1.1.13 Convert the following annual interest rates to monthly rates:

1. $8 \%$ p.a. $\quad \mathbf{0 . 6 7 \%}$ per month
2. $18 \%$ p.a. $1.5 \%$ per month
3. $4.8 \%$ p.a. $\quad 0.4 \%$ per month

## Exercise 1.1.14 Further applications

1. Calculate the daily interest rate on a credit card if the annual rate is $17.8 \%$ p.a. 0.0488\%
2. Convert $\$ 540 /$ week to an equivalent monthly rate.
\$2340/month
3. Convert $\$ 1014 /$ month to an equivalent fortnightly rate.
\$468/fortnight
4. Convert $\$ 461.50 / q u a r t e r ~ t o ~ a n ~ e q u i v a l e n t ~ w e e k l y ~ r a t e . ~$
$\$ 35.50$
Copyright © 2000-2022 Yimin Math Centre (www.yiminmathcentre.com)

### 1.1.5 Solving problem with rates

## Exercise 1.1.15

1. George drove 15 km in 10 minutes. At the same speed, how far does he drive in 2 hours?

## Solution: $\quad 15 \times 12=180 \mathrm{~km}$.

2. If it takes 3 hours to remove 72 t of sugar from a silo, how long it would take to remove $30 t$ ?

Solution: $\quad 72 \div 2=24 t / h \Rightarrow 30 \div 24=1 \frac{1}{4} h$ or 1 hour 15 min.
3. A long distance runner completes a marathon of 42.2 kilometres in 2 hours 15 minutes. Calculate his average speed in $\mathrm{km} / \mathrm{h}$ and $\mathrm{m} / \mathrm{s}$, correct to 2 decimal places.

Solution: $\quad 2 \mathrm{~h} 15 \mathrm{~min}=2.25=8100 \mathrm{sec} .422000 \div 8100=5.21 \mathrm{~m} / \mathrm{s}=18.76 \mathrm{~km} / \mathrm{h}$.
4. The following currency conversions show the value of 1 Australian dollar (A\$1) in US\$, euro and NZ\$.

$$
\begin{array}{|l|l|l|}
\hline A \$ 1=U S \$ 0.6925 & A \$ 1=0.5226 \text { euro } & A \$ 1=N Z \$ 1.2171 \\
\hline
\end{array}
$$

Use these currency conversions to convert:
(a) $A \$ 30$ into US $\$ \quad$ US $\$ 20.775=$ US $\$ 20.78$
(b) $A \$ 50$ in euro $\qquad$ \$26.13 euro.
(c) $A \$ 500$ into $N Z \$ \_N Z \$ 608.55$
5. Use the unitary method to answer the following questions:
(a) David paid $\$ 4.95$ for 3 kg of apples. How much would he paid for 8 kg ?

$$
\text { Solution: } \quad 4.95 \div 3=\$ 1.65 / \mathrm{kg}, \Rightarrow 8 \times 1.65=\$ 13.20
$$

(b) In a walking race, Peter took 20 minutes to walk 4 km . How long would it take him to walk 15 km ?

$$
\text { Solution: } \quad 4 \div 20=200 \mathrm{~m} / \mathrm{min}, 15000 \div 200=75 \text { min or } 1 \mathrm{~h} 15 \mathrm{~min} .
$$

(c) If chicken is being sold for $\$ 6.80$ per kilogram, find the cost of purchasing 450 grams of chicken.

$$
\text { Solution: } \quad 6.8 \times 0.45=\$ 3.06
$$

### 1.2 Miscellaneous Exercises

## Exercise 1.2.1 Round off the following correct to $\mathbf{3}$ significant figures:

1. 99.38 $\qquad$ 99.4
2. 194.63 $\qquad$ 195
3. 499.682 $\qquad$ 500

## Exercise 1.2.2 Convert each of these recurring decimals to a fraction or mixed numeral, in simplest

 form:1. $0.7 \dot{3}$

Solution: Let $x=0.7 \dot{3} \Rightarrow 10 x=7 . \dot{3}, \Rightarrow 100 x=73 . \dot{3} 100 x-10 x=66 \Rightarrow x=\frac{66}{90}=\frac{11}{15}$.
2. $1 . \dot{6} \dot{0}$

$$
\text { Solution: } \quad \text { Let } x=1 . \dot{6} \dot{0}, \Rightarrow 100 x=160 . \dot{6} 0 \quad \Rightarrow 100 x-x=159, \Rightarrow x=\frac{159}{99}=1 \frac{20}{33} .
$$

## Exercise 1.2.3 Complete the following equivalent rates:

1. $25 \nless / \mathrm{cm}^{2}=\$$ $\qquad$ $/ m^{2}$
2. $1.5 \mathrm{~g} / \mathrm{cm}^{3}=$ $\qquad$ $t / m^{3}$
3. $160 \mathrm{~mL} / \mathrm{m}^{2}=$ $\qquad$ 160,000 $L / \mathrm{km}^{2}$
4. $\$ 120 / L=$ $\qquad$ $\phi / \mathrm{cm}^{3}$

## Exercise 1.2.4 Further applications

1. At the 1896 Olympic Games, Australia's Edwin Flack won a gold medal in the 800 m in a time of 2 minutes 11 seconds.
(a) Find the average speed in $\mathrm{m} / \mathrm{s}$, correct to 1 decimal place.

Solution:

$$
800 \div 131=6.1 \mathrm{~m} / \mathrm{s}
$$

(b) Express this speed in $\mathrm{km} / \mathrm{h}$. $21.96 \mathrm{~km} / \mathrm{h}$
2. On a property sold for $\$ 600,000$, a real estate agent receives a commission of $\$ 12,000$. At what rate is the commission calculated?

$$
\text { Solution: } \quad \frac{12000}{600,000} \times 100=2 \% \text {. }
$$

## Exercise 1.2.5 Simplify the following:

1. $\frac{(4 x-y)^{3}+4 x-y}{4 x-y}$

$$
\text { Solution: } \quad \begin{aligned}
\frac{(4 x-y)^{3}+4 x-y}{4 x-y} & =\frac{(4 x-y)\left[(4 x-y)^{2}+1\right]}{4 x-y} \\
& =(4 x-y)^{2}+1 .
\end{aligned}
$$

2. $\frac{x^{2}+x-2}{x+2} \times \frac{x^{2}-3 x}{x^{2}-4 x+3}$

Solution: $\quad \frac{x^{2}+x-2}{x+2} \times \frac{x^{2}-3 x}{x^{2}-4 x+3}=\frac{(x+2)(x-1)}{x+2} \times \frac{x(x-3)}{(x-1)(x-3)}=x$
3. $\frac{3}{y^{2}+2 y-8}-\frac{2}{y^{2}+y-6}$

Solution: $\frac{3}{y^{2}+2 y-8}-\frac{2}{y^{2}+y-6}=\frac{3}{(y-2)(y+4)}-\frac{2}{(y+3)(y-2)}$

$$
\begin{aligned}
& =\frac{3(y+3)}{(y-2)(y+4)(y+3)}-\frac{2(y+4)}{(y+3)(y-2)(y+4)} \\
& =\frac{3 y+9-2 y-8}{(y+3)(y-2)(y+4)} \\
& =\frac{y+1}{(y+3)(y-2)(y+4)}
\end{aligned}
$$

4. $\frac{9 x^{2}-4 y^{2}}{6 x-4 y}$

$$
\text { Solution: } \quad \begin{aligned}
\frac{9 x^{2}-4 y^{2}}{6 x-4 y} & =\frac{(3 x-2 y)(3 x+2 y)}{2(3 x-2 y)} \\
& =\frac{3 x+2 y}{2} .
\end{aligned}
$$

5. $\frac{2 x^{2}-18}{3 x^{2}+9 x}$

## Solution:

$$
\begin{aligned}
\frac{2 x^{2}-18}{3 x^{2}+9 x} & =\frac{2\left(x^{2}-9\right)}{3 x(x+3)} \\
& =\frac{2(x-3)(x+3)}{3 x(x+3)} \\
& =\frac{2(x-3)}{3 x} .
\end{aligned}
$$

## Exercise 1.2.6 Factorise the following:

1. $3 x^{2}-x-4$
Solution:

$$
3 x^{2}-x-4=(3 x-4)(x+1)
$$

2. $y^{4}-256$

$$
\text { Solution: } \quad \begin{aligned}
y^{4}-256 & =\left(y^{2}\right)^{2}-16^{2} \\
& =\left(y^{2}-16\right)\left(y^{2}+16\right) \\
& =(y-4)(y+4)\left(y^{2}+16\right) .
\end{aligned}
$$

3. $x^{2}-y^{2}-x+y$

$$
\text { Solution: } \quad \begin{aligned}
x^{2}-y^{2}-x+y & =(x-y)(x+y)-(x-y) \\
& =(x-y)(x+y-1) .
\end{aligned}
$$

4. $3 x-6 y+x^{2}-2 x y$

$$
\text { Solution: } \quad \begin{aligned}
3 x-6 y+x^{2}-2 x y & =3(x-2 y)+x(x-2 y) \\
& =(x-2 y)(3+x) .
\end{aligned}
$$

5. $2 x+y^{2}+2 y+x y$

$$
\text { Solution: } \quad \begin{aligned}
2 x+y^{2}+2 y+x y & =(2 x+x y)+\left(y^{2}+2 y\right) \\
& =x(2+y)+y(y+2) \\
& =(y+2)(x+y) .
\end{aligned}
$$

6. $6 y^{2}-13 y-5$

## Solution:

$$
6 y^{2}-13 y-5=(3 y+1)(2 y-5)
$$

