Year 9 Term 1 Homework Worked Solutions

	Student Name:		Grade:				-			
	Ľ	Date: _		Score:				2		
T :	able Yea	e of co r 9 Tern	Ontents n 1 Week 1 Homework Worked Solutio	ns						1
	1.1	Ration	al Number							1
		1.1.1	Significant figures							1
		1.1.2	Estimation							3
		1.1.3	Recurring decimals							4
		1.1.4	Rates							6
		1.1.5	Solving problem with rates							8
	1.2	Misce	llaneous Exercises							9

This edition was printed on March 15, 2022.

Camera ready copy was prepared with the LATEX2e typesetting system.

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

1 Year 9 Term 1 Week 1 Homework Worked Solutions

1.1 Rational Number

A rational number is a number that can be written in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

1.1.1 Significant figures

A significant figure is a number that is correct within some stated degree of accuracy. The rule for significant figures are:

- All non-zero digits are significant.
- Zeros between non-zero digits are significant.
- Zeros at the end of a decimal are significant.
- Zeros before the first non-zero digit in a decimal are not significant.
- Zeros after the last non-zero digit in a whole number may or may not be significant.

Example 1.1.1 State the number of significant figures in each of these numbers:

1. 2.008

Solution: In 2.008, the two non-zero digits are significant and two zeros between these digits are also significant. \therefore the number has four significant figures.

2. 102.50

Solution: In 102.50, the three non-zero digits are significant and both the zero in between and at the end of the decimal are significant. :. The number has five significant figures.

3. 0.00125

Solution: In 0.00125, the three non-zero digits are significant; however, the three zeros at the beginning of the decimal are not significant. \therefore the number has only three significant figures.

4. 9000

Solution: In 9000, the non-zero digit is significant. Either some, all or none of the final zeros could possibly be significant. If we knew that the number had been rounded off correct to:

- (a) 1 significant figure, then only the 9 would be significant.
- (b) 2 significant figures, then only the 9 and the first zero would be significant.
- (c) 3 significant figures, then only the 9 and the first two zeros would be significant.
- (d) 4 significant figures, then all the digits would be significant.

Exercise 1.1.1 Round off 34.535 correct to: *1. 1 significant figure* ______**30**_____ 2. 2 significant figures _____ 35 ____ *3. 3 significant figures* <u>34.5</u> 4. 4 significant figures _____ **34.54**_____ **Exercise 1.1.2 State the number of significant figures in each of the following:** 1. 5002 <u>4 significant figures</u> 2. 0.48 <u>2 significant figures</u> 3. 3.40 3 significant figures 4. 12.0050 <u>6 significant figures</u> 5. 0.012003400 <u>8 significant figures</u> Exercise 1.1.3 Round off each of the following correct to 1 significant figure: *1. 325* **300** 2. 280 _____ 300 *3. 2180* **2000** • 4. 12.56 _____10 5. 99.45 100 Exercise 1.1.4 Round off each of the following correct to 2 significant figures: 1. 8580 8,600 2. 123003 <u>120,000</u> 3. 8028 8,000 *4*. 0.25349 **0.25** 5. 194.95 **190**

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

1.1.2 Estimation

- An estimate is an approximate answer that is worked out logically.
- It needs to be of the same order of magnitude.

Exercise 1.1.5 Estimate the answer, as an integer to each of these:

 1. $9.6 + 19.3 + 12.2 \ge 40 \sim 41$

 2. $95.5 - 27.3 + 15.048 \ge 85$

 3. $12.2 \times 3.75 \times 5.4 \ge 200 \sim 240$

 4. $126.6 \div 9.81 \ge 12 \sim 13$

 5. $53.5 \div 6.12 \times 8.045 \ge 70 \sim 75$

Exercise 1.1.6 Further applications

- 1. Evaluate $\sqrt{4}$ and $\sqrt{9}$, find estimates for the following, correct to 1 decimal place.
 - (a) $\sqrt{5} \simeq 2.2 \sim 2.3$
 - (b) $\sqrt{8} \simeq 2.8 \sim 2.9$
- 2. Evaluate $\sqrt{121}$ and $\sqrt{144}$. Hence, find estimates for the following, correct to 1 decimal place.
 - (a) $\sqrt{125} \approx 11.1 \sim 11.2$
 - (b) $\sqrt{145} \simeq 12 \sim 12.1$
- 3. John decided to re-carpet his lounge room using carpet squares of side length 40 cm. The lounge room is rectangular in shape and measure 4.8 m by 5.6 m.
 - (a) Estimate the area of the room in square metres. $27 m^2 \sim 30 m^2$
 - (b) How many carpet squares are needed to cover an area of 2 m^2 . <u>14 ~ 15</u>
 - (c) Estimate the number of carpet squares that are needed to cover the entire lounge room floor. $225 \sim 250$
 - (d) If the carpet squares are sold in packs of 50 at \$280 per pack, estimate the total cost of the re-carpeting.

 $5 \times 280 \approx \$1400$

1.1.3 Recurring decimals

- A recurring decimal has an infinite number of decimal places, with one or more of the digits repeating themselves indefinitely.
- Recurring decimals are written with a dot above the first and the last digits in the repeating sequence.
- Every recurring decimal can be expressed as a fraction, so recurring decimals are rational numbers.

Example 1.1.2

- 1. $0.3333333... = 0.\dot{3}$
- 2. $0.1666666... = 0.1\dot{6}$
- 3. $0.616161... = 0.\dot{6}\dot{1}$
- 4. $1.329329... = 1.\dot{3}2\dot{9}$
- To convert a fraction to a recurring decimal divide the numerator by the denominator.
- To convert a recurring decimal to a fraction:
 - let the decimal be x
 - multiply both sides by the smallest power of 10 so that the recurring part of the decimal becomes a whole number
 - subtract the first equation from the second and solve the resulting equation.

Example 1.1.3 Convert each of these recurring decimals to a fraction in its simplest form:

1. 0.Ġ

Solution: let $x = 0.\dot{6} \dots (1)$ $\therefore 10x = 6.\dot{6} \dots (2)$ subtract (1) from (2) we have 9x = 6. $\therefore x = \frac{6}{9} = \frac{2}{3}$

2. 0.125

Solution: let $x = 0.\dot{1}2\dot{5}$ (1) $\therefore 1000x = 125.\dot{1}2\dot{5}$ (2) subtract (1) from (2) we have 999x = 125 $\therefore x = \frac{125}{999}$

Exercise 1.1.7 Write each of these as a recurring decimal:

Exercise 1.1.8 Convert each of these recurring decimals to a fraction or a mixed numeral, in simplest form:

 $1. \ 0.\dot{3}\dot{5}$

Solution:	$let x = 0.\dot{3}\dot{5} \implies 100x = 35.\dot{3}\dot{5} \implies 100x - x = 35$	
	$\therefore 99x = 35, \Rightarrow x = \frac{35}{99}.$	

2. 0.48

Solution:
let
$$x = 0.4\dot{8}$$
, $10x = 4.\dot{8}$, $100x = 48.\dot{8} \Rightarrow 100x - 10x = 48.\dot{8} - 4.\dot{8} = 44$
 $\therefore 90x = 44 \Rightarrow x = \frac{44}{90} = \frac{22}{45}.$

3. 0.146

Solution:	Let $x = 0.\dot{1}\dot{4}\dot{6} \Rightarrow 1000x = 146.\dot{1}\dot{4}\dot{6}$
A	$1000x - x = 146 \implies x = \frac{146}{999}.$

4. 3.416

Solution:	Let $x = 3.41\dot{6} \Rightarrow 100x = 341.\dot{6} \Rightarrow 1$	$1000x = 3416.\dot{6}$
	$1000x - 100x = 3416.\dot{6} - 341.\dot{6} \Rightarrow x =$	$=\frac{3075}{900}=3\frac{5}{12}.$

1.1.4 Rates

- A rate is a comparison of two unlike quantities.
- A rate is a measure of how one quantity is changing with respect to another.
- To be in simplest form, a rate must be expressed as a quantity per one unit of another quantity.

Example 1.1.4 Express each of the following statements as a rate in simplest form.

- 1. 210 km in 3 hours = 70 km/h.
- 2. 36 L in 9 min = 4 L/min.
- 3. \$180 in 4 hours = \$45/h.

Exercise 1.1.9 Express each of the the following statements as a rate in simplest form:

 1. 45 m in 3 seconds
 15 m/s

 2. 260 km in 4 hours
 65 km/h

 3. \$18 for 8 kg
 \$2.25/kg

 4. 72 kL in 1.5 hours
 48 kL/h

 5. 26 km on 25 L
 1.04 km/L, or 1040 m/L

 6. 240 heart beats in $2\frac{1}{2}$ min
 96 beats/min

Exercise 1.1.10 Complete the following equivalent rates:

Exercise 1.1.11 Complete the following equivalent rates:

- 1. 25 m/s = 90 km/h
- 2. 8 mm/min = <u>11.52</u> m/day
- 3. 0.5 m/min = _____ km/day
- 4. 11 m/mL = 11 km/L
- 5. 125 m/min = _____ km/h
- 6. 25 mL/s = 90 L/h
- 7. 720 m/min = <u>12</u> m/s
- 8. 14.6 t/day = <u>14600</u> kg/day

Exercise 1.1.12 Convert the following monthly interest rates to annual rates:

- 1. 0.65% per month ______ **7.8% p.a.**
- 2. 0.8% per month _____9.6 % p.a.
- 3. 1.25% per month ______ **15% p.a.**____

Exercise 1.1.13 Convert the following annual interest rates to monthly rates:

- 1. 8% p.a. ______ 0.67% per month
- 2. 18% p.a. <u>1.5% per month</u>
- *3.* 4.8% p.a. _____ 0.4% per month

Exercise 1.1.14 Further applications

- Calculate the daily interest rate on a credit card if the annual rate is 17.8% p.a.
 0.0488%
- Convert \$540/week to an equivalent monthly rate.
 \$2340/month
- 3. Convert \$1014/month to an equivalent fortnightly rate. <u>\$468/fortnight</u>
- 4. Convert \$461.50/quarter to an equivalent weekly rate. \$35.50

1.1.5 Solving problem with rates Exercise 1.1.15

1. George drove 15 km in 10 minutes. At the same speed, how far does he drive in 2 hours?

Solution: $15 \times 12 = 180 \, km.$

2. If it takes 3 hours to remove 72 t of sugar from a silo, how long it would take to remove 30 t?

Solution: $72 \div 2 = 24 t/h \Rightarrow 30 \div 24 = 1\frac{1}{4}h \text{ or } 1 \text{ hour } 15 \text{ min.}$

3. A long distance runner completes a marathon of 42.2 kilometres in 2 hours 15 minutes. Calculate his average speed in km/h and m/s, correct to 2 decimal places.

Solution: $2h 15min = 2.25 = 8100 \text{ sec. } 422000 \div 8100 = 5.21 \text{ } m/s = 18.76 \text{ } km/h.$

4. The following currency conversions show the value of 1 Australian dollar (A\$1) in US\$, euro and NZ\$.

A\$1 = US\$0.6925 A\$1 = 0.5226 euro A\$1 = NZ\$1.2171

Use these currency conversions to convert:

- (a) A\$30 into US\$ <u>US\$ 20.775 = US\$ 20.78</u>
- (b) A\$50 in euro _____ \$26.13 euro
- (c) A\$500 into NZ\$ <u>NZ \$608.55</u>

5. Use the unitary method to answer the following questions:

(a) David paid \$4.95 for 3 kg of apples. How much would he paid for 8 kg?

Solution: $4.95 \div 3 = \$1.65/kg, \Rightarrow 8 \times 1.65 = \13.20

(b) In a walking race, Peter took 20 minutes to walk 4 km. How long would it take him to walk 15 km?

Solution: $4 \div 20 = 200m/min, \ 15000 \div 200 = 75 \ min \ or \ 1h15min.$

(c) If chicken is being sold for \$6.80 per kilogram, find the cost of purchasing 450 grams of chicken.

Solution: $6.8 \times 0.45 = 3.06

1.2 Miscellaneous Exercises

Exercise 1.2.1 Round off the following correct to 3 significant figures:

Exercise 1.2.2 Convert each of these recurring decimals to a fraction or mixed numeral, in simplest form:

1. 0.73

Solution: Let $x = 0.7\dot{3} \Rightarrow 10x = 7.\dot{3}, \Rightarrow 100x = 73.\dot{3}\ 100x - 10x = 66 \Rightarrow x = \frac{66}{90} = \frac{11}{15}$.

2. 1.ĠÒ

Solution: Let x = 1.60, $\Rightarrow 100x = 160.60 \Rightarrow 100x - x = 159$, $\Rightarrow x = \frac{159}{99} = 1\frac{20}{33}$.

Exercise 1.2.3 Complete the following equivalent rates:

 1. 25 $\phi/cm^2 = \$$ 2500
 $/m^2$ 3. $1.5 g/cm^3 =$ 1.5
 t/m^3

 2. 160 mL/m² =
 160,000
 L/km²
 4. \$120/L = 12
 ϕ/cm^3

Exercise 1.2.4 Further applications

- 1. At the 1896 Olympic Games, Australia's Edwin Flack won a gold medal in the 800 m in a time of 2 minutes 11 seconds.
 - (a) Find the average speed in m/s, correct to 1 decimal place.

	Solution:	$800 \div 131 = 6.1 m/s$	
(b)	Express this speed in km/h	21.96 km/h	

2. On a property sold for \$600,000, a real estate agent receives a commission of \$12,000. At what rate is the commission calculated?

Solution:	$\frac{12000}{600,000} \times 100 = 2\%.$	
Solution:	$\frac{12000}{600,000} \times 100 = 2\%.$	

Exercise 1.2.5 Simplify the following:

1.
$$\frac{(4x-y)^3+4x-y}{4x-y}$$

Solution:

$$\frac{(4x-y)^3 + 4x - y}{4x - y} = \frac{(4x-y)[(4x-y)^2 + 1]}{4x - y}$$

$$= (4x-y)^2 + 1.$$

2. $\frac{x^2 + x - 2}{x + 2} \times \frac{x^2 - 3x}{x^2 - 4x + 3}$

Solution:
$$\frac{x^2 + x - 2}{x + 2} \times \frac{x^2 - 3x}{x^2 - 4x + 3} = \frac{(x + 2)(x - 1)}{x + 2} \times \frac{x(x - 3)}{(x - 1)(x - 3)} = x$$

3. $\frac{3}{y^2+2y-8} - \frac{2}{y^2+y-6}$

Solution:	3	2	3	2	
	$y^2 + 2y - 8$	$y^2 + y - 6$	(y-2)(y+4)	(y+3)(y -	2)
		_	3(y+3)		2(y+4)
		—	(y-2)(y+4)(y-1)(y+4)(y-1)(y-1)(y-1)(y-1)(y-1)(y-1)(y-1)(y-1	(+3) = (y + 3)	(3)(y-2)(y+4)
			3y + 9 - 2y -	8	
		7	$\overline{(y+3)(y-2)(y+3)}$	+4)	
			y+1		
			(y+3)(y-2)(y+3)(y-2)(y+3)(y+3)(y-2)(y+3)(y-2)(y+3)(y-2)(y+3)(y-2)(y+3)(y-2)(y-2)(y-3)(y-2)(y-3)(y-3)(y-3)(y-3)(y-3)(y-3)(y-3)(y-3	+ 4)	

4. $\frac{9x^2 - 4y^2}{6x - 4y}$

Solution: $\frac{9x^2 - 4y^2}{6x - 4y}$	$= \frac{(3x - 2y)(3x + 2y)}{2(3x - 2y)}$ = $\frac{3x + 2y}{2}$.

5. $\frac{2x^2 - 18}{3x^2 + 9x}$

Solution:	$\frac{2x^2 - 18}{3x^2 + 9x} =$	$=\frac{2(x^2-9)}{3x(x+3)}$
	=	$=\frac{2(x-3)(x+3)}{3x(x+3)}$
	=	$=\frac{2(x-3)}{3x}.$

Exercise 1.2.6 Factorise the following:

1. $3x^2 - x - 4$

Solution:	$3x^2 - x - 4 = (3x - 4)(x + 1)$
	$3x^{-} - x - 4 = (3x - 4)(x + 1)$

2. $y^4 - 256$

Solution:	$y^4 - 256 = (y^2)^2 - 16^2$	K
	$= (y^2 - 16)(y^2 + 16)$	
	$= (y-4)(y+4)(y^2+16).$	

3. $x^2 - y^2 - x + y$

Solution:	$x^{2} - y^{2} - x + y = (x - y)(x + y) - (x - y)$	
	x y x y $(x$ $y)$ $(x$ $y)$	
	= (x - y)(x + y - 1).	

4. $3x - 6y + x^2 - 2xy$

Solution:	$3x - 6y + x^{2} - 2xy = 3(x - 2y) + x(x - 2y)$	
	= (x - 2y)(3 + x).	

5. $2x + y^2 + 2y + xy$

Solution:

$$2x + y^2 + 2y + xy = (2x + xy) + (y^2 + 2y)$$

 $= x(2 + y) + y(y + 2)$
 $= (y + 2)(x + y).$

6. $6y^2 - 13y - 5$

Solution:	$6y^2 - 13y - 5 = (3y + 1)(2y - 5).$	
