Year 9 Term 2 Homework Worked Solutions

	Stu	dent	Name:	Grade:	
	Dat	te:		Score:	
Ta 1	ble o Year 9	of co Term	ontents n 2 Week 1 Homework Worked Solutio	ns	1
	1.1 E	Equation	ons, inequations and formulae		1
	1	.1.1	Evaluate the Subject of a Formula		1
	1	.1.2	Changing the Subject of a Formula		2
	1	.1.3	Inequations		3
	1	.1.4	Problem Solving		5
	1.2 N	Maths	Challenge		7

This edition was printed on March 15, 2022.

Camera ready copy was prepared with the LATEX2e typesetting system.

and the second

Copyright © 2000 - 2022 Yimin Math Centre (www.yiminmathcentre.com)

1 Year 9 Term 2 Week 1 Homework Worked Solutions

1.1 Equations, inequations and formulae

1.1.1 Evaluate the Subject of a Formula

Exercise 1.1.1 Substitution into a formula

1. If
$$A = P(1 + \frac{r}{100})^n$$
, find the A when $P = 10000$, $r = 20$ and $n = 2$.

Solution: $A = 10000 \left(1 + \frac{20}{100}\right)^2 \Rightarrow \therefore A = 14400.$

2. If $T = \frac{n}{2}[2a + (n-1)d]$, find T if a = 6, d = 3 and n = 8.

Solution:
$$T = \frac{8}{2} \times [2 \times 6 + (8 - 1) \times 3] = 132.$$

3. If $M = \frac{1}{M_1} - \frac{1}{M_2}$, find M when $M_1 = 1.2$ and $M_2 = 0.6$

Solution:	M = 1 1 1 10 10 10 20 5
	$M = \frac{1}{1.2} = \frac{1}{0.6} = \frac{1}{12} = \frac{1}{6} = \frac{1}{12} = \frac{1}{12} = \frac{1}{6}.$

- 4. If $V = \frac{4}{3}\pi r^3$, find the value of:
 - (a) r correct to 1 decimal place when $V = 288\pi \ cm^3$.

Solution:

$$288\pi = \frac{4}{3}\pi r^3 \Rightarrow r^3 = 288 \times \frac{3}{4} \Rightarrow r^3 = 216$$

 $\therefore r = 6 \, cm.$

(b) r correct to 1 decimal place when $V = 200 \, cm^3$.

Solution:	$200 = \frac{4}{3}\pi r^3 \Rightarrow r^3 = \frac{3}{4\pi} \times 200$
	$r^3 = 47.746 \Rightarrow \therefore r = 3.6 cm$

1.1.2 Changing the Subject of a Formula

Exercise 1.1.2 Make y the subject:

1. 6x - 12 = 3y - 2x

Solution:
$$6x - 12 = 3y - 2x \Rightarrow 3y = 6x + 2x - 12 \Rightarrow \therefore y = \frac{8x - 12}{3}.$$

2. xy - 7 = ax + by

Solution:

$$xy - 7 = ax + by \Rightarrow xy - by = ax + 7 \Rightarrow y(x - b) = ax + 7$$

 $\Rightarrow \therefore y = \frac{ax + 7}{x - b}.$

3. 3(4x - 2y) = 15x - 3

Solution:
$$3(4x - 2y) = 15x - 3 \Rightarrow 12x - 6y = 15x - 3 \Rightarrow 6y = 12x - 15x + 3$$

 $6y = -3x + 3 \Rightarrow \therefore y = \frac{-3x + 3}{6} = \frac{-x + 1}{2} \text{ or } y = \frac{x - 1}{-2} \text{ or } y = \frac{1 - x}{2}.$

4. $2y = \frac{3xy}{5} - 4$

Solution:

$$3(4x - 2y) = 15x - 3 \Rightarrow 10y = 3xy - 20 \Rightarrow 3xy - 10y = 20$$

 $\Rightarrow y(3x - 10) = 20 \Rightarrow \therefore y = \frac{20}{3x - 10} \text{ or } y = \frac{-20}{10 - 3x}.$

5. $x^2 = y^2 - 8x$

Solution:
$$x^2 = y^2 - 8x \Rightarrow y^2 = x^2 + 8x \Rightarrow \therefore y = \sqrt{x^2 + 8x}.$$

6. $\frac{y}{y-6} = \frac{2x}{3}$

Solution:

$$\frac{y}{y-6} = \frac{2x}{3} \implies 2x(y-6) = 3y \implies 2xy - 12x = 3y$$

$$2xy - 3y = 12x \implies y(2x-3) = 12x \implies \therefore y = \frac{12x}{2x-3} \text{ or } \frac{-12x}{3-2x}.$$

1.1.3 Inequations

An **inequation** is a number sentence in which two quantities are not equal. Graphing solutions on the number line:

- place the number that occurs in the solution at the centre of the number line segment.
- draw a closed dot on this number f the inequality sign is \geq or \leq .
- draw an open dot \circ on this number if the inequality sign is > or <.
- from the dot, draw an arrow along the number line in the direction indicated by the inequality sign.

When multiplying or dividing both sides of an inequation by a negative number, reverse the inequality sign.

Example 1.1.1 Graph each of these inequation on a number line:

a 3 4		b			-	_
	5 6 7	7	-4 -3	-2	-1	ò
c	4 5 6	d	4 5	6	-0	8

Example 1.1.2

1. $4x + 2 \le 26$

Solution:		$4x + 2 \le 26$	$\Rightarrow 4x \leq$	24
			$\therefore x \leq$	6.

2. $5x + 3 \ge 2x + 12$

Solution: $5x + 3 \ge 2x + 12 \implies 5x - 2x \ge 12 - 3$ $3x \ge 9$ $\therefore x \ge 3$

3. $9 \le \frac{x}{4} + 3$

Solution:	$9 \le \frac{x}{4} + 3 \implies 6 \le \frac{x}{4}$
	$24 \leq x$
	$\therefore x \ge 24$

Exercise 1.1.3 Solve the following inequations and graph the solution on a number line.

1. $3x - 1 \ge 14$

Solution: $3x - 1 \ge 14 \Rightarrow 3x \ge 15 \Rightarrow \therefore x \ge 5.$

2. 19 < 2x + 7

Solution:	$19 < 2x + 7 \implies 2x > 12 \implies \therefore x > 6.$	

3. $6 \le 8(3x - 2)$

Solution:
$$6 \le 8(3x-2) \Rightarrow 6 \le 24x - 16 \Rightarrow 24x \ge 22 \Rightarrow \therefore x \ge \frac{11}{12}$$

4. $2 - 4x \le 14 - x$

Solution:	$2 - 4x \le 14 - x \; \Rightarrow \;$	$-3x \le 12$ \therefore $x \ge$	-4.

5. $\frac{x-2}{4} \le 3$

Solution:
$$\frac{x-2}{4} \le 3 \Rightarrow x-2 \le 12 \Rightarrow x \le 14.$$

6. $15 + \frac{x}{2} \ge 8$

Solution:	$15 + \frac{x}{z} > 8 \Rightarrow 30 + x > 16 \therefore x > -14$	

7. $2 - \frac{x-2}{4} \ge 5$

Solution:
$$2 - \frac{x-2}{4} \ge 5 \implies 8 - x + 2 \ge 20 - x \ge 10 \implies \therefore x \le -10.$$

8. $\frac{2x}{3} - \frac{x}{5} \ge 21$

Solution:
$$\frac{2x}{3} - \frac{x}{5} \ge 21 \implies 10x - 3x \ge 315 \implies 7x \ge 315 \implies \therefore x \ge 45.$$

1.1.4 Problem Solving

Exercise 1.1.4 Solve the following inequation problems:

1. If a certain integer is increased by 3 and the result is greater than 7 but less than 13. Find all possible values for the integer.

Solution: $7 < N + 3 < 13 \Rightarrow N = 5, 6, 7, 8, 9.$
--

2. Two sides of a given triangle are 10 cm and 26 cm. What is the range of the possible lengths for the third side of the triangle?

Solution:	Shorest side $> 26 - 10 > 16 cm$; Longest side $< 10 + 26 < 36 cm$.
\therefore the range of the poss	sible lengths for the third side of the triangle will be $16 < N < 36 cm$.

3. A rectangle is to be constructed with length x cm and width (x-7) cm. The perimeter of the rectangle is to be less than 36 cm. What are the possible values for x?

Solution:	$2 \times [x + (x - 7)] < 36 \Rightarrow 4x - 14 < 36 \Rightarrow 4x < 50$	
	$\therefore x < 12\frac{1}{2}, \text{ but } x > 7,$	
	\Rightarrow \therefore 7 < x < 12 ⁻¹	
	2	

4. The sum of 3 consecutive integers is greater than 9 but no more than 20. What could the integers be?

Solution:	9 < n + (n + 1) + (n + 2) < 20
	$\Rightarrow 9 < 3n + 3 < 20$
	$6 < 3n < 17 \implies \therefore \ 2 < n < 5$
	that is: $n = \begin{cases} 3, \ 4, \ 5, \\ 4, \ 5, \ 6, \\ 5, \ 6, \ 7. \end{cases}$

Exercise 1.1.5 Solve the following problems:

1. Find two numbers such that their sum is 20, while half their difference is 1.

Solution:	$\int A + B = 20$	$\int A = \frac{20+2}{2} = 11$
·	$\frac{A-B}{2} = 1$	$B = \frac{20-2}{2} = 9.$

2. A 2.8 m length of timber is cut into 4 pieces. One piece is twice the length of the shortest piece and the others are 30 cm longer than the shortest piece. Find the length of each piece of timber.

Solution: Let the shorest one be $S cm: \Rightarrow S + 2S + (S + 30) \times 2 = 280$, $5S + 60 = 280 \Rightarrow S = 44 cm$ \therefore the length of each piece of timber are: 44 cm, 74 cm, 74 cm, and 88 cm.

3. Consider a square garden with sides x metres long. A path p metres wide surrounds a square area of lawn with side y metres, as shown in the figure below:

(a) Write down a formula for y in terms of x and p.

Solution:	y = x - 2p

(b) If x = 16 m and p = 2 m, find the area of the path.

Solution: when x = 16 and $p = 2 \Rightarrow y = 16 - 4 = 12$ \therefore Area of the path $= x^2 - y^2 = 16^2 - 12^2 = 112 m^2$.

1.2 Maths Challenge

Exercise 1.2.1

1. If a # b = ab - 1, find the value of $\frac{(2\#3)\#5}{2\#(3\#5)}$.

Solution:	$\frac{(2\#3)\#5}{2\#(3\#5)} = \frac{(2\times3-1)\times5-1}{2\times(3\times5-1)-1}$	
	$=\frac{24}{2}$	
	27 8	
	$=\frac{6}{9}$.	

2. If "&" represents an operation defined as $x \& y = x^y + y^x$, find the value of (2&3)&2.

Solution:	$(2\&3)\&2 = (2^3 + 3^2)^2 + 2^{17}$
	= 289 + 131072
	= 131361.

3. If $\frac{x+y}{x-y} = 1\frac{3}{4}$, find the value of $\frac{x^2}{y^2}$.

$\frac{1}{x-y} = \frac{1}{4} \Rightarrow 4(x+y) = 7(x-y) \Rightarrow 4x + 4y = 7x - 7y$ $3x = 11y \Rightarrow \frac{x}{y} = \frac{11}{3} \therefore \frac{x^2}{y^2} = \frac{121}{9}.$

4. Let $x = \frac{1}{2}(\sqrt[3]{7} - \frac{1}{\sqrt[3]{7}})$, find the value of $(x + \sqrt{1 + x^2})^3$.

Solution:

$$x^{2} = \frac{1}{4} \left(\sqrt[3]{7^{2}} - 2 + \frac{1}{\sqrt[3]{7^{2}}} \right)$$

$$1 + x^{2} = \frac{1}{4} \left(\sqrt[3]{7^{2}} + 2 + \frac{1}{\sqrt[3]{7^{2}}} \right)$$

$$\sqrt{1 + x^{2}} = \frac{1}{2} \left(\sqrt[3]{7} + \frac{1}{\sqrt[3]{7}} \right)$$

$$x + \sqrt{1 + x^{2}} = \frac{1}{2} \left(\sqrt[3]{7} - \frac{1}{\sqrt[3]{7}} \right) + \frac{1}{2} \left(\sqrt[3]{7} + \frac{1}{\sqrt[3]{7}} \right) = \sqrt[3]{7}$$

$$\Rightarrow x + \sqrt{1 + x^{2}} = \sqrt[3]{7} \Rightarrow \therefore (x + \sqrt{1 + x^{2}})^{3} = 7.$$